Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire film brings cheaper, faster electronics a step closer

07.11.2003


Researchers at Harvard University have demonstrated for the first time that they can easily apply a film of tiny, high-performance silicon nanowires to glass and plastic, a development that could pave the way for the next generation of cheaper, lighter and more powerful consumer electronics. The development could lead to such futuristic products as disposable computers and optical displays that can be worn in your clothes or contact lenses, they say.



Their research appears in the November issue of Nano Letters, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

While amorphous silicon and polycrystalline silicon are considered the current state of the art material for making electronic components such as computer chips and LCDs, silicon nanowires, a recent development, are considered even better at carrying an electrical charge, the researchers say. Although a single nanowire is one thousand times smaller than the width of a human hair, it can carry information up to 100 times faster than similar components used in current consumer electronic products, they add.


Scientists have already demonstrated that these tiny wires have the ability to serve as components of highly efficient computer chips and can emit light for brilliant multicolor optical displays. But they have had difficulty until now in applying these nanowires to everyday consumer products, says Charles M. Lieber, Ph.D., head of the research project and a professor of chemistry at Harvard.

"As with conventional high-quality semi-conducting materials, the growth of high-quality nanowires requires relatively high temperature," explains Lieber. "This temperature requirement has - up until now - limited the quality of electronics on plastics, which melt at such growth temperatures."

"By using a ’bottom-up’ approach pioneered by our group, which involves assembly of pre-formed nanoscale building blocks into functional devices, we can apply a film of nanowires to glass or plastics long after growth, and do so at room temperature," says Lieber.

Using a liquid solution of the silicon nanowires, the researchers have demonstrated that they can deposit the silicon onto glass or plastic surfaces — similar to applying the ink of a laser printer to a piece of paper — to make functional nanowire devices.

They also showed that nanowires applied to plastic can be bent or deformed into various shapes without hurting performance, a plus for making consumer electronics more durable.

According to Lieber, the first devices made with this new nanowire technology will probably improve on existing devices such as smart cards and LCD displays, which utilize conventional amorphous silicon and organic semiconductors that are comparatively slow and are already approaching their technological limitations.

Within the next decade, consumers could see more exotic applications of this nanotechnology, Lieber says. "One could imagine, for instance, contact lenses with displays and miniature computers on them, so that you can experience a virtual tour of a new city as you walk around wearing them on your eyes, or alternatively harness this power to create a vision system that enables someone who has impaired vision or is blind to ’see’."

The military should also find practical use for this technology, says Lieber. One problem soldiers encounter is the tremendous weight — up to 100 pounds — that they carry in personal equipment, including electronic devices. "The light weight and durability of our plastic nanowire electronics could allow for advanced displays on robust, shock-resistant plastic that can withstand significant punishment while minimizing the weight a soldier carries," he says.

Many challenges still lie ahead, such as configuring the wires for optimal performance and applying the wires over more diverse surfaces and larger areas, the researcher says.

Lieber recently helped start a company, NanoSys, Inc., that is now developing nanowire technology and other nanotechnology products.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>