Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A giant wind-powered generator

14.10.2003


The new TWT-1650 wind-powered generator presented in Pamplona has 36-metre vanes which, in a circular movement, sweep an area greater than that of a football pitch and which can withstand extremes of weather, including winds of up to 110 kilometres an hour.



This device, made by Grupo Mtorres in collaboration with the Institute for the Diversification and Saving of Energy (IDAE), is beginning its commercial life, after three years of tests.

The new model, with a power of 1,650 kilowatts, uses a multipolar technology and distinguishes itself from conventional machines in that mechanical elements have been replaced by electronic ones, i.e. the "multiplier" which reproduced wind power as electricity has been replaced and 60 magnets have been installed in the "rotors" (the part that gyrates).


The system has environmental advantages, as well as ones of costs and energy yield, given that the mechanical part of wind-powered generators are the cause of 30% of the failures and errors in these machines. In other words, an important percentage of maintenance costs will disappear.

This is why a new wind park concept is considered: distributed energy generation, i.e. small installations with three to six machines and near the consumer and connected directly to the distribution grid.

This means less noise and less visual impact on mountain ridges and by the migratory routes for birds, as well as eliminating the use of lubricant oils which the machinery mechanics needed (300 litres per year).

The disadvantages of this technological development is that the wind-powered generator has more weight and volume (this Group is even considering achieving 50-metre long vanes made up of carbon-fibre modules) and the initial investment and costs is greater than the conventional models.

Energetically the machine – which has a computer which controls what is done at any moment depending on wind direction – better withstands troughs in the grid and is therefore more reliable in power cut situations.

The Mtorres Group and the German company, Enercom are the only enterprises developing this technology.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>