Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New diode could enable faster, more efficient electronics

13.10.2003


Engineers have designed a new diode that transmits more electricity than any other device of its kind, and the inspiration for it came from technology that is 40 years old.


Paul R. Berger



Unlike other diodes in its class, called tunnel diodes, the new diode is compatible with silicon, so manufacturers could easily build it into mainstream electronic devices such as cell phones and computers.

Industry has long sought to marry tunnel diodes with conventional electronics as a means to simplify increasingly complex circuits, explained Paul R. Berger, professor of electrical engineering and physics at Ohio State.


“Computer chips now are worse than the Los Angeles freeway, with wires running back and forth clogging the path of propagating signals,” Berger said. “At some point, things are going to come to a grinding halt, and chips won’t run any faster.”

Because this diode can replace some of the circuits on a typical chip, it could potentially simplify chip design without compromising performance.

“Essentially, manufacturers would get more bang for their buck,” Berger said.

Researchers around the world have toiled for decades to develop such a diode, which could enable fast, efficient electronics that run on low-power batteries by requiring fewer devices to perform the same function.

The new diode conducts 150,000 amps per square centimeter of its silicon-based material -- a rate three times higher than that of the only comparable silicon tunnel diode.

Berger designed the diode with a team of engineers from Ohio State, the Naval Research Laboratory, and the University of California, Riverside. They describe it in today’s issue of the journal Applied Physics Letters.

“Our goal was to develop a tunnel diode that could be built directly onto a traditional computer chip at minimal cost,” Berger said. “And we’ve achieved that.”

Tunnel diodes are so named because they exploit a quantum mechanical effect known as tunneling, which lets electrons pass through barriers unhindered. The first tunnel diodes were created in the 1960s, and led to a Nobel Prize for physicist Leo Esaki in 1973.

Since then, in an effort to build more powerful diodes, researchers have increasingly turned to expensive, exotic materials that aren’t compatible with silicon, but allow tailored properties not often available in silicon.

Most modern tunnel diodes are “intraband” diodes, meaning they restrict the movements of electrons to one energy level, or “band,” within the semiconductor crystal. But the Esaki tunnel diodes were “interband” diodes -- they permitted electrons to pass back and forth between different energy bands.

At first, Berger’s team tried to develop intraband diodes with silicon technology. But faced with what he called a “materials science nightmare,” they turned instead to Esaki’s early tunnel diode technology for inspiration.

To construct a powerful interband diode, Berger’s team had to develop a new technique for creating silicon structures that contain unusually large quantities of other chemical elements, or dopants, such as boron and phosphorus.

“Essentially, we traded one nightmare for another,” Berger said with a laugh. “Mother Nature doesn’t want that much dopant in one place, but the doping problem was one that we felt we could tackle.”

They layered silicon and silicon-germanium into a structure that measured only a few nanometers, or billionths of a meter, high. Then they discovered that by changing the thickness of a central “spacer” layer, where the electrons are tunneling, they could tailor the amount of current that passed through the material. This had to be tempered with a design that kept the boron and phosphorus from intermixing.

Berger said that the diode’s ability to operate in low-power conditions makes it ideal for use in power-hungry devices that generate radio-frequency signals, such as cordless home telephones and cell phones. With little power input, the diode could generate a strong signal.

One other application that Berger finds particularly interesting involves medical devices. The diode could support a low-power data link that would let doctors perform diagnostics on pacemakers and other implants by remote, without wires protruding through a patient’s skin that could cause infections.

Co-authors on the paper included electrical engineering graduate students Niu Jin, Sung-Yong Chung, and Anthony T. Rice, and physics graduate student Ronghua Yu, all of Ohio State; Phillip E. Thompson of the Naval Research Lab; and Roger Lake of the University of California, Riverside.

This work was sponsored by the National Science Foundation and the Office of Naval Research. Berger will continue work supported by NSF and a major electronics company to develop wireless applications for the technology. Depending on that initial development, the technology could reach consumers anywhere from five to 15 years from now.

#

Contact: Paul R. Berger, (614) 247-6235; pberger@ieee.org

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://researchnews.osu.edu/archive/diode.htm
http://www.eleceng.ohio-state.edu/%7Eberger/
http://www.eleceng.ohio-state.edu/

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>