Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New diode could enable faster, more efficient electronics

13.10.2003


Engineers have designed a new diode that transmits more electricity than any other device of its kind, and the inspiration for it came from technology that is 40 years old.


Paul R. Berger



Unlike other diodes in its class, called tunnel diodes, the new diode is compatible with silicon, so manufacturers could easily build it into mainstream electronic devices such as cell phones and computers.

Industry has long sought to marry tunnel diodes with conventional electronics as a means to simplify increasingly complex circuits, explained Paul R. Berger, professor of electrical engineering and physics at Ohio State.


“Computer chips now are worse than the Los Angeles freeway, with wires running back and forth clogging the path of propagating signals,” Berger said. “At some point, things are going to come to a grinding halt, and chips won’t run any faster.”

Because this diode can replace some of the circuits on a typical chip, it could potentially simplify chip design without compromising performance.

“Essentially, manufacturers would get more bang for their buck,” Berger said.

Researchers around the world have toiled for decades to develop such a diode, which could enable fast, efficient electronics that run on low-power batteries by requiring fewer devices to perform the same function.

The new diode conducts 150,000 amps per square centimeter of its silicon-based material -- a rate three times higher than that of the only comparable silicon tunnel diode.

Berger designed the diode with a team of engineers from Ohio State, the Naval Research Laboratory, and the University of California, Riverside. They describe it in today’s issue of the journal Applied Physics Letters.

“Our goal was to develop a tunnel diode that could be built directly onto a traditional computer chip at minimal cost,” Berger said. “And we’ve achieved that.”

Tunnel diodes are so named because they exploit a quantum mechanical effect known as tunneling, which lets electrons pass through barriers unhindered. The first tunnel diodes were created in the 1960s, and led to a Nobel Prize for physicist Leo Esaki in 1973.

Since then, in an effort to build more powerful diodes, researchers have increasingly turned to expensive, exotic materials that aren’t compatible with silicon, but allow tailored properties not often available in silicon.

Most modern tunnel diodes are “intraband” diodes, meaning they restrict the movements of electrons to one energy level, or “band,” within the semiconductor crystal. But the Esaki tunnel diodes were “interband” diodes -- they permitted electrons to pass back and forth between different energy bands.

At first, Berger’s team tried to develop intraband diodes with silicon technology. But faced with what he called a “materials science nightmare,” they turned instead to Esaki’s early tunnel diode technology for inspiration.

To construct a powerful interband diode, Berger’s team had to develop a new technique for creating silicon structures that contain unusually large quantities of other chemical elements, or dopants, such as boron and phosphorus.

“Essentially, we traded one nightmare for another,” Berger said with a laugh. “Mother Nature doesn’t want that much dopant in one place, but the doping problem was one that we felt we could tackle.”

They layered silicon and silicon-germanium into a structure that measured only a few nanometers, or billionths of a meter, high. Then they discovered that by changing the thickness of a central “spacer” layer, where the electrons are tunneling, they could tailor the amount of current that passed through the material. This had to be tempered with a design that kept the boron and phosphorus from intermixing.

Berger said that the diode’s ability to operate in low-power conditions makes it ideal for use in power-hungry devices that generate radio-frequency signals, such as cordless home telephones and cell phones. With little power input, the diode could generate a strong signal.

One other application that Berger finds particularly interesting involves medical devices. The diode could support a low-power data link that would let doctors perform diagnostics on pacemakers and other implants by remote, without wires protruding through a patient’s skin that could cause infections.

Co-authors on the paper included electrical engineering graduate students Niu Jin, Sung-Yong Chung, and Anthony T. Rice, and physics graduate student Ronghua Yu, all of Ohio State; Phillip E. Thompson of the Naval Research Lab; and Roger Lake of the University of California, Riverside.

This work was sponsored by the National Science Foundation and the Office of Naval Research. Berger will continue work supported by NSF and a major electronics company to develop wireless applications for the technology. Depending on that initial development, the technology could reach consumers anywhere from five to 15 years from now.

#

Contact: Paul R. Berger, (614) 247-6235; pberger@ieee.org

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://researchnews.osu.edu/archive/diode.htm
http://www.eleceng.ohio-state.edu/%7Eberger/
http://www.eleceng.ohio-state.edu/

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>