Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New diode could enable faster, more efficient electronics

13.10.2003


Engineers have designed a new diode that transmits more electricity than any other device of its kind, and the inspiration for it came from technology that is 40 years old.


Paul R. Berger



Unlike other diodes in its class, called tunnel diodes, the new diode is compatible with silicon, so manufacturers could easily build it into mainstream electronic devices such as cell phones and computers.

Industry has long sought to marry tunnel diodes with conventional electronics as a means to simplify increasingly complex circuits, explained Paul R. Berger, professor of electrical engineering and physics at Ohio State.


“Computer chips now are worse than the Los Angeles freeway, with wires running back and forth clogging the path of propagating signals,” Berger said. “At some point, things are going to come to a grinding halt, and chips won’t run any faster.”

Because this diode can replace some of the circuits on a typical chip, it could potentially simplify chip design without compromising performance.

“Essentially, manufacturers would get more bang for their buck,” Berger said.

Researchers around the world have toiled for decades to develop such a diode, which could enable fast, efficient electronics that run on low-power batteries by requiring fewer devices to perform the same function.

The new diode conducts 150,000 amps per square centimeter of its silicon-based material -- a rate three times higher than that of the only comparable silicon tunnel diode.

Berger designed the diode with a team of engineers from Ohio State, the Naval Research Laboratory, and the University of California, Riverside. They describe it in today’s issue of the journal Applied Physics Letters.

“Our goal was to develop a tunnel diode that could be built directly onto a traditional computer chip at minimal cost,” Berger said. “And we’ve achieved that.”

Tunnel diodes are so named because they exploit a quantum mechanical effect known as tunneling, which lets electrons pass through barriers unhindered. The first tunnel diodes were created in the 1960s, and led to a Nobel Prize for physicist Leo Esaki in 1973.

Since then, in an effort to build more powerful diodes, researchers have increasingly turned to expensive, exotic materials that aren’t compatible with silicon, but allow tailored properties not often available in silicon.

Most modern tunnel diodes are “intraband” diodes, meaning they restrict the movements of electrons to one energy level, or “band,” within the semiconductor crystal. But the Esaki tunnel diodes were “interband” diodes -- they permitted electrons to pass back and forth between different energy bands.

At first, Berger’s team tried to develop intraband diodes with silicon technology. But faced with what he called a “materials science nightmare,” they turned instead to Esaki’s early tunnel diode technology for inspiration.

To construct a powerful interband diode, Berger’s team had to develop a new technique for creating silicon structures that contain unusually large quantities of other chemical elements, or dopants, such as boron and phosphorus.

“Essentially, we traded one nightmare for another,” Berger said with a laugh. “Mother Nature doesn’t want that much dopant in one place, but the doping problem was one that we felt we could tackle.”

They layered silicon and silicon-germanium into a structure that measured only a few nanometers, or billionths of a meter, high. Then they discovered that by changing the thickness of a central “spacer” layer, where the electrons are tunneling, they could tailor the amount of current that passed through the material. This had to be tempered with a design that kept the boron and phosphorus from intermixing.

Berger said that the diode’s ability to operate in low-power conditions makes it ideal for use in power-hungry devices that generate radio-frequency signals, such as cordless home telephones and cell phones. With little power input, the diode could generate a strong signal.

One other application that Berger finds particularly interesting involves medical devices. The diode could support a low-power data link that would let doctors perform diagnostics on pacemakers and other implants by remote, without wires protruding through a patient’s skin that could cause infections.

Co-authors on the paper included electrical engineering graduate students Niu Jin, Sung-Yong Chung, and Anthony T. Rice, and physics graduate student Ronghua Yu, all of Ohio State; Phillip E. Thompson of the Naval Research Lab; and Roger Lake of the University of California, Riverside.

This work was sponsored by the National Science Foundation and the Office of Naval Research. Berger will continue work supported by NSF and a major electronics company to develop wireless applications for the technology. Depending on that initial development, the technology could reach consumers anywhere from five to 15 years from now.

#

Contact: Paul R. Berger, (614) 247-6235; pberger@ieee.org

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://researchnews.osu.edu/archive/diode.htm
http://www.eleceng.ohio-state.edu/%7Eberger/
http://www.eleceng.ohio-state.edu/

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>