Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale model catalyst paves way toward atomic-level understanding

09.09.2003


In an attempt to understand why ruthenium sulfide (RuS2) is so good at removing sulfur impurities from fuels, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have succeeded in making a model of this catalyst -- nanoparticles supported on an inert surface -- which can be studied under laboratory conditions. "If we can understand why this catalyst is so active, we might be able to make it even better, or use what we learn to design other highly efficient catalysts," said Tanhong Cai, one of the scientists who made the model.



Removing sulfur from fossil fuels such as oil and coal is mandated because the resulting fuels burn more cleanly and efficiently. One common way of achieving this is to add hydrogen in the presence of a catalyst to release hydrogen sulfide (H2S). Recently, RuS2 was found to be 100 times more active than the catalyst most commonly used for this "hydrodesulfurization" reaction. But studying the catalyst in action is nearly impossible because the reaction takes place at high temperatures and under extreme pressure.

The Brookhaven team has therefore created a model of the catalyst via a chemical reaction that deposits nanosized particles of RuS2 on a nonreactive gold surface. The small size of the particles maximizes the surface area available for the catalytic reaction to take place, and makes it ideal for analysis by classic surface chemistry techniques, such as scanning tunneling microscopy and x-ray photoemission spectroscopy. The entire model is being studied under well-defined ultrahigh vacuum conditions.


Cai will present a talk on the preparation and characterization of this model catalyst during the "Size-Selected Clusters on Surfaces, Divison of Physical Chemistry" session on Monday, September 8, 2003, at 4:30 p.m. in the Javits Convention Center, Room 1E10. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>