Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale model catalyst paves way toward atomic-level understanding

09.09.2003


In an attempt to understand why ruthenium sulfide (RuS2) is so good at removing sulfur impurities from fuels, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have succeeded in making a model of this catalyst -- nanoparticles supported on an inert surface -- which can be studied under laboratory conditions. "If we can understand why this catalyst is so active, we might be able to make it even better, or use what we learn to design other highly efficient catalysts," said Tanhong Cai, one of the scientists who made the model.



Removing sulfur from fossil fuels such as oil and coal is mandated because the resulting fuels burn more cleanly and efficiently. One common way of achieving this is to add hydrogen in the presence of a catalyst to release hydrogen sulfide (H2S). Recently, RuS2 was found to be 100 times more active than the catalyst most commonly used for this "hydrodesulfurization" reaction. But studying the catalyst in action is nearly impossible because the reaction takes place at high temperatures and under extreme pressure.

The Brookhaven team has therefore created a model of the catalyst via a chemical reaction that deposits nanosized particles of RuS2 on a nonreactive gold surface. The small size of the particles maximizes the surface area available for the catalytic reaction to take place, and makes it ideal for analysis by classic surface chemistry techniques, such as scanning tunneling microscopy and x-ray photoemission spectroscopy. The entire model is being studied under well-defined ultrahigh vacuum conditions.


Cai will present a talk on the preparation and characterization of this model catalyst during the "Size-Selected Clusters on Surfaces, Divison of Physical Chemistry" session on Monday, September 8, 2003, at 4:30 p.m. in the Javits Convention Center, Room 1E10. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>