Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists create world’s most efficient light-bulb


Donegan’s Microcavities: quantum dots emitting light in green and red

Scientists have successfully produced the most efficient light bulb ever – but on the microscopic scale. Researchers at Trinity College, Dublin have discovered a technique which significantly improves the output of light from quantum dots, and also allows their light to be focussed and manipulated easily. Their findings are published today in the Institute of Physics journal Semiconductor Science and Technology.

Dr Yuri Rakovich and Dr John Donegan from Trinity College, Dublin working with researchers at the universities of Hamburg and Munich, have successfully placed quantum dots (the most efficient light-bulb in the world) onto a tiny polymer sphere.

Scientists have known for some time that quantum dots (tiny particles made from certain semiconducting materials) have numerous applications as they are capable of producing light without wasting any energy as heat. They are the basic unit of quantum computers – computers around 10,000 times faster that the fastest computer currently in use. John Donegan’s team have found that they can make quantum dots more efficient than ever. By embedding quantum dots on the surface of a microsphere they can enhance the output of light from these quantum dots by a factor of 20 and - because these structures are spherical - they allow the light emitted from the quantum dots to be focussed into a fine beam which can be moved around easily by the researcher.

The Trinity College team’s work has been carried out entirely under the microscope. They took a polymer microsphere of about 5 microns in diameter (one twentieth the diameter of a human hair) and coated the surface with quantum dots made of cadmium telluride, a semiconductor similar to gallium nitride. Once the surface of the microsphere was fully coated in quantum dots, they observed the surface emitting light in different colours; in this case red and green.

Dr Donegan and his team have been trying to improve the efficiency of light emission from quantum dots so that they can create a beam of light as tightly focussed as possible. These beams have a large number of possible applications and are likely to be applied to all branches of quantum technology in the future (computing, mobile phones, energy production). Dr Donegan’s team are particularly interested in the manipulation of single strands of DNA. They are able to produce beams of light thin enough to be capable of manipulating a single strand of DNA, stretching it and reading the genetic information. Devices which can do this with light have been dubbed “optical tweezers” but Donegan’s group believe they can now create a beam of light much finer than ever before and one which can be manipulated much more easily than previously thought possible.

Dr Donegan said: “We hope that our microcavity will help in all possible applications of quantum dots but especially in our ability to manipulate physically single strands of DNA. It could have major uses in genetic analysis and in gene sequencing where the ability to handle DNA strands with increasing accuracy and dexterity is becoming ever more important”.

| alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>