Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create world’s most efficient light-bulb

27.08.2003


Donegan’s Microcavities: quantum dots emitting light in green and red


Scientists have successfully produced the most efficient light bulb ever – but on the microscopic scale. Researchers at Trinity College, Dublin have discovered a technique which significantly improves the output of light from quantum dots, and also allows their light to be focussed and manipulated easily. Their findings are published today in the Institute of Physics journal Semiconductor Science and Technology.

Dr Yuri Rakovich and Dr John Donegan from Trinity College, Dublin working with researchers at the universities of Hamburg and Munich, have successfully placed quantum dots (the most efficient light-bulb in the world) onto a tiny polymer sphere.

Scientists have known for some time that quantum dots (tiny particles made from certain semiconducting materials) have numerous applications as they are capable of producing light without wasting any energy as heat. They are the basic unit of quantum computers – computers around 10,000 times faster that the fastest computer currently in use. John Donegan’s team have found that they can make quantum dots more efficient than ever. By embedding quantum dots on the surface of a microsphere they can enhance the output of light from these quantum dots by a factor of 20 and - because these structures are spherical - they allow the light emitted from the quantum dots to be focussed into a fine beam which can be moved around easily by the researcher.



The Trinity College team’s work has been carried out entirely under the microscope. They took a polymer microsphere of about 5 microns in diameter (one twentieth the diameter of a human hair) and coated the surface with quantum dots made of cadmium telluride, a semiconductor similar to gallium nitride. Once the surface of the microsphere was fully coated in quantum dots, they observed the surface emitting light in different colours; in this case red and green.

Dr Donegan and his team have been trying to improve the efficiency of light emission from quantum dots so that they can create a beam of light as tightly focussed as possible. These beams have a large number of possible applications and are likely to be applied to all branches of quantum technology in the future (computing, mobile phones, energy production). Dr Donegan’s team are particularly interested in the manipulation of single strands of DNA. They are able to produce beams of light thin enough to be capable of manipulating a single strand of DNA, stretching it and reading the genetic information. Devices which can do this with light have been dubbed “optical tweezers” but Donegan’s group believe they can now create a beam of light much finer than ever before and one which can be manipulated much more easily than previously thought possible.

Dr Donegan said: “We hope that our microcavity will help in all possible applications of quantum dots but especially in our ability to manipulate physically single strands of DNA. It could have major uses in genetic analysis and in gene sequencing where the ability to handle DNA strands with increasing accuracy and dexterity is becoming ever more important”.

| alfa
Further information:
http://stacks.iop.org/SS/18/914

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>