Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tungsten photonic crystals may answer the need for more power in advanced electrical applications

25.08.2003


Technical Insights’ High Tech Materials Alert



Scientists have discovered that when lattice tungsten filaments are heated, they are capable of emitting greater energy than solid tungsten filaments.

"Because of this significant advance, lattice tungsten filaments will likely meet the increasing power requirements of high-tech electrical systems, such as those in hybrid electric cars, sophisticated boats, engines, and industrial waste heat-driven electrical generators," says Technical Insights Analyst Aninditta Savitry.


Tungsten lattice emissions transfer more energy than solid tungsten filaments into certain bands of near-infrared wavelengths. The energy is used by photovoltaic cells to convert light into electricity. "The next generation of lighting may arrive if the results that are now possible at 1.5 microns can be extended to the entire visible spectrum," says Savitry.

Tungsten lattices have crystalline regularity and are capable of bending light without losing any energy. Computer chip production technology has enabled mass fabrication of these sub-micron-featured lattices. Precise channels of the crystal lattice have been constructed, forming a home for particular wavebands as they travel. The innovation here is to use the channels not to bend light, but to permit input energy to exit only with the desired frequency bands, and thereby enhance output.

Existing receivers absorb only limited bands of incoming energy across the wide spectrum of infrared radiation. Photonic lattices, when placed between a solar, dynamo, or fire generator and receiver, can be engineered to absorb energy.

Tungsten lattices have exhibited a conversion efficiency of 34 percent and electrical power density of about 14 W/cm2 when heated to 1,250 degree centigrade in a vacuum.

New analysis by Technical Insights, a business unit of Frost & Sullivan (http://www.ti.frost.com), featured in High-Tech Materials Alert, presents insights into the discovery of tungsten photonic crystals and their capabilities in providing higher power than competing materials.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of tungsten photonic crystals is covered in High Tech Materials Alert, a Technical Insights subscription service, and in Advanced Materials Update, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.


###
High Tech Materials Alert

Contact:
USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID: 603-6204-5811
Gen: 603-6204-5800
Fax: 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com/
http://www.Technical-Insights.frost.com

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>