Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tungsten photonic crystals may answer the need for more power in advanced electrical applications

25.08.2003


Technical Insights’ High Tech Materials Alert



Scientists have discovered that when lattice tungsten filaments are heated, they are capable of emitting greater energy than solid tungsten filaments.

"Because of this significant advance, lattice tungsten filaments will likely meet the increasing power requirements of high-tech electrical systems, such as those in hybrid electric cars, sophisticated boats, engines, and industrial waste heat-driven electrical generators," says Technical Insights Analyst Aninditta Savitry.


Tungsten lattice emissions transfer more energy than solid tungsten filaments into certain bands of near-infrared wavelengths. The energy is used by photovoltaic cells to convert light into electricity. "The next generation of lighting may arrive if the results that are now possible at 1.5 microns can be extended to the entire visible spectrum," says Savitry.

Tungsten lattices have crystalline regularity and are capable of bending light without losing any energy. Computer chip production technology has enabled mass fabrication of these sub-micron-featured lattices. Precise channels of the crystal lattice have been constructed, forming a home for particular wavebands as they travel. The innovation here is to use the channels not to bend light, but to permit input energy to exit only with the desired frequency bands, and thereby enhance output.

Existing receivers absorb only limited bands of incoming energy across the wide spectrum of infrared radiation. Photonic lattices, when placed between a solar, dynamo, or fire generator and receiver, can be engineered to absorb energy.

Tungsten lattices have exhibited a conversion efficiency of 34 percent and electrical power density of about 14 W/cm2 when heated to 1,250 degree centigrade in a vacuum.

New analysis by Technical Insights, a business unit of Frost & Sullivan (http://www.ti.frost.com), featured in High-Tech Materials Alert, presents insights into the discovery of tungsten photonic crystals and their capabilities in providing higher power than competing materials.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of tungsten photonic crystals is covered in High Tech Materials Alert, a Technical Insights subscription service, and in Advanced Materials Update, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.


###
High Tech Materials Alert

Contact:
USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID: 603-6204-5811
Gen: 603-6204-5800
Fax: 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com/
http://www.Technical-Insights.frost.com

More articles from Power and Electrical Engineering:

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>