Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tungsten photonic crystals may answer the need for more power in advanced electrical applications

25.08.2003


Technical Insights’ High Tech Materials Alert



Scientists have discovered that when lattice tungsten filaments are heated, they are capable of emitting greater energy than solid tungsten filaments.

"Because of this significant advance, lattice tungsten filaments will likely meet the increasing power requirements of high-tech electrical systems, such as those in hybrid electric cars, sophisticated boats, engines, and industrial waste heat-driven electrical generators," says Technical Insights Analyst Aninditta Savitry.


Tungsten lattice emissions transfer more energy than solid tungsten filaments into certain bands of near-infrared wavelengths. The energy is used by photovoltaic cells to convert light into electricity. "The next generation of lighting may arrive if the results that are now possible at 1.5 microns can be extended to the entire visible spectrum," says Savitry.

Tungsten lattices have crystalline regularity and are capable of bending light without losing any energy. Computer chip production technology has enabled mass fabrication of these sub-micron-featured lattices. Precise channels of the crystal lattice have been constructed, forming a home for particular wavebands as they travel. The innovation here is to use the channels not to bend light, but to permit input energy to exit only with the desired frequency bands, and thereby enhance output.

Existing receivers absorb only limited bands of incoming energy across the wide spectrum of infrared radiation. Photonic lattices, when placed between a solar, dynamo, or fire generator and receiver, can be engineered to absorb energy.

Tungsten lattices have exhibited a conversion efficiency of 34 percent and electrical power density of about 14 W/cm2 when heated to 1,250 degree centigrade in a vacuum.

New analysis by Technical Insights, a business unit of Frost & Sullivan (http://www.ti.frost.com), featured in High-Tech Materials Alert, presents insights into the discovery of tungsten photonic crystals and their capabilities in providing higher power than competing materials.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of tungsten photonic crystals is covered in High Tech Materials Alert, a Technical Insights subscription service, and in Advanced Materials Update, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.


###
High Tech Materials Alert

Contact:
USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID: 603-6204-5811
Gen: 603-6204-5800
Fax: 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com/
http://www.Technical-Insights.frost.com

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>