Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Spintronics" could enable a new generation of electronic devices

11.08.2003


Moore´s Law - a dictum of the electronics industry that says the number of transistors that fit on a computer chip will double every 18 months - may soon face some fundamental roadblocks. Most researchers think there´ll eventually be a limit to how many transistors they can cram on a chip. But even if Moore´s Law could continue to spawn ever-tinier chips, small electronic devices are plagued by a big problem: energy loss, or dissipation, as signals pass from one transistor to the next. Line up all the tiny wires that connect the transistors in a Pentium chip, and the total length would stretch almost a mile. A lot of useful energy is lost as heat as electrons travel that distance.

Theoretical physicists at Stanford and the University of Tokyo think they´ve found a way to solve the dissipation problem by manipulating a neglected property of the electron - its "spin", or orientation, typically described by its quantum state as "up" or "down."

They report their findings in the Aug. 7 issue of Science Express, an online version of Science magazine. Electronics relies on Ohms Law, which says application of a voltage to many materials results in the creation of a current. That´ because electrons transmit their charge through the materials. But Ohm´s Law also describes the inevitable conversion of electric energy into heat when electrons encounter resistance as they pass through materials.



"We have discovered the equivalent of a new `Ohm´s Law´ for spintronics - the emerging science of manipulating the spin of electrons for useful purposes," says Shoucheng Zhang, a physics professor at Stanford. Professor Naoto Nagaosa of the University of Tokyo and his research assistant, Shuichi Murakami, are Zhang´s co-authors. "Unlike the Ohm´s Law for electronics, the new `Ohm´s Law´ that we´ve discovered says that the spin of the electron can be transported without any loss of energy, or dissipation. Furthermore, this effect occurs at room temperature in materials already widely used in the semiconductor industry, such as gallium arsenide. That´s important because it could enable a new generation of computing devices."

Zhang uses a celestial analogy to explain two important properties of electrons - their center of mass and their spin: "The Earth has two kinds of motion. One is that its center of mass moves around the Sun. But the other is that it also spins by itself, or rotates. The way it moves around the Sun gives us the year, but the way it rotates around by itself gives us the day. The electron has similar properties." While electronics uses voltage to move an electron´s center of mass, spintronics uses voltage to manipulate its spin.

The authors predict that application of an electric field will cause electrons´ spins to flow together collectively in a current. The applied electric force, the spins and the spin current align in three different directions that are all perpendicular to each other.

"This is a remarkable thing," explains Zhang. "I push you forward and you move sideways - not in the direction that I´m pushing you."

So far, only superconductors are known to carry current without any dissipation. However, extremely low temperatures, typically -150 degree Celsius, are required for the dissipationless current to flow inside a superconductor. Unlike electronic superconductors being investigated in advanced laboratories throughout the world, whose operating temperatures are too low to be practical in commercial devices, Zhang, Nagaosa and Murakami theorize that the dissipationless spin current will flow even at room temperature.

"This [the work reported in the paper] is a theoretical prediction," Zhang says. "The next step is to work closely with experimental labs to verify this prediction and to demonstrate this effect." That will require creating materials and testing them with a sensitive spin detector. "Once this is done we can go ahead to propose different device structures which take advantage of this effect," he says.

Zhang characterizes his work as fundamental research but says spintronics is already making its way into devices in other labs. With lack of dissipation, spintronics may be the best mechanism for creating ever-smaller devices. The potential market is enormous, he says. "In maybe a 10-year timeframe, spintronics will be on par with electronics," he predicts. "That´s why there´s a huge race going on around the world."

The National Science Foundation and the Department of Energy in the United States and the Ministry of Education, Culture, Sports, Science and Technology in Japan funded the work.

Contact: Dawn Levy, +1-650-725-1944, dawnlevy@stanford.edu

Dawn Levy | EurekAlert!
Further information:
http://news-service.stanford.edu/news/2003/august20/zhang-video-820.html

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>