Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst paves way for cheap, renewable hydrogen

27.06.2003


Photos of high-throughput reactor showing A) reactor with common headspace top plate (used for catalyst reduction) and B) reactor with isolated headspace plate (used for reaction and gas chromatograph analysis).
Credit: G. W. Huber, J. W. Shabaker, and J. A. Dumesic, University of Wisconsin-Madison; NSF, DOE


Scientists have developed a hydrogen-making catalyst that uses cheaper materials and yields fewer contaminants than do current processes, while extracting the element from common renewable plant sources. Further, the new catalyst lies at the heart of a chemical process the authors say is a significant advance in producing alternate fuels from domestic sources.

In the June 27 issue of the journal Science, James Dumesic, John Shabaker and George Huber, of the University of Wisconsin at Madison, report developing the catalyst from nickel, tin and aluminum and using it in a process called aqueous-phase reforming (APR), which converts plant byproducts to hydrogen. The process performs as well as current methods that use precious metals such as platinum, yet runs at lower temperatures and is much cleaner.

"The APR process can be used on the small scale to produce fuel for portable devices, such as cars, batteries, and military equipment, " said Dumesic. "But it could also be scaled up as a hydrogen source for industrial applications, such as the production of fertilizers or the removal of sulfur from petroleum products."



The team is now collaborating with scientists at Virent Energy Systems in Wisconsin as part of a National Science Foundation (NSF) Small Business Technology Transfer (STTR) grant to develop catalysts for generating fuels from biomass.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering.

Hydrogen is a "clean" fuel because when it burns, it combines with oxygen to form water; no toxic byproducts or greenhouse gasses are produced in the process. The APR process extracts hydrogen from a variety of biological sources, especially simple carbohydrates and sugars generated by common plants.

The precious metal platinum (Pt) is well known to be an excellent catalyst in a number of chemical reactions. It is one component in a car’s catalytic converter, for example, that helps remove toxins from automobile exhaust. Yet, platinum is rare and very expensive, costing more than $17 per gram (about $8,000 per pound).

Catalytic platinum (Pt) and nickel (Ni) stand out from other metals (such as copper or iron) because they process reaction molecules much faster. But pure nickel, unlike platinum, recombines the hydrogen product with carbon atoms to make methane, a common greenhouse gas. Dumesic and his colleagues tested over 300 catalysts to find one that could compete with platinum and perform in the APR process. Using a specially designed reactor that can test 48 samples at one time, the team finally found a match in a modified version of what researchers call a Raneynickel catalyst, named after Murray Raney, who first patented the alloy in 1927.

Raney-nickel is a porous catalyst made of about 90 percent nickel (Ni) and 10 percent aluminum (Al). While Raney-nickel proved somewhat effective at separating hydrogen from biomass-derived molecules, the researchers improved the material’s effectiveness by adding more tin (Sn), which stops the production of methane and instead generates more hydrogen. Relative to other catalysts, the Raney-NiSn can perform for long time periods (at least 48 hours) and at lower temperatures (roughly 225 degrees Celsius).

According to Dumesic, a substitute for platinum catalysts is essential for the success of hydrogen technology. "We had to find a substitute for platinum in our APR process for production of hydrogen, since platinum is rare and also employed in the anode and cathode materials of hydrogen fuel cells to be used in products such as cars or portable computers," he said.


Additional support for this research was provided by the U.S. Department of Energy (DOE) and by the Materials Research Science and Engineering Center on Nanostructured Materials and Interfaces at the University of Wisconsin, a center established and supported by NSF.


NSF STTR Program Officer: Rosemarie Wesson, 703-292-8330, rwesson@nsf.gov

Principal Investigator: James Dumesic, 608-262-1096, dumesic@engr.wisc.edu

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Josh Chamot | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>