Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst paves way for cheap, renewable hydrogen

27.06.2003


Photos of high-throughput reactor showing A) reactor with common headspace top plate (used for catalyst reduction) and B) reactor with isolated headspace plate (used for reaction and gas chromatograph analysis).
Credit: G. W. Huber, J. W. Shabaker, and J. A. Dumesic, University of Wisconsin-Madison; NSF, DOE


Scientists have developed a hydrogen-making catalyst that uses cheaper materials and yields fewer contaminants than do current processes, while extracting the element from common renewable plant sources. Further, the new catalyst lies at the heart of a chemical process the authors say is a significant advance in producing alternate fuels from domestic sources.

In the June 27 issue of the journal Science, James Dumesic, John Shabaker and George Huber, of the University of Wisconsin at Madison, report developing the catalyst from nickel, tin and aluminum and using it in a process called aqueous-phase reforming (APR), which converts plant byproducts to hydrogen. The process performs as well as current methods that use precious metals such as platinum, yet runs at lower temperatures and is much cleaner.

"The APR process can be used on the small scale to produce fuel for portable devices, such as cars, batteries, and military equipment, " said Dumesic. "But it could also be scaled up as a hydrogen source for industrial applications, such as the production of fertilizers or the removal of sulfur from petroleum products."



The team is now collaborating with scientists at Virent Energy Systems in Wisconsin as part of a National Science Foundation (NSF) Small Business Technology Transfer (STTR) grant to develop catalysts for generating fuels from biomass.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering.

Hydrogen is a "clean" fuel because when it burns, it combines with oxygen to form water; no toxic byproducts or greenhouse gasses are produced in the process. The APR process extracts hydrogen from a variety of biological sources, especially simple carbohydrates and sugars generated by common plants.

The precious metal platinum (Pt) is well known to be an excellent catalyst in a number of chemical reactions. It is one component in a car’s catalytic converter, for example, that helps remove toxins from automobile exhaust. Yet, platinum is rare and very expensive, costing more than $17 per gram (about $8,000 per pound).

Catalytic platinum (Pt) and nickel (Ni) stand out from other metals (such as copper or iron) because they process reaction molecules much faster. But pure nickel, unlike platinum, recombines the hydrogen product with carbon atoms to make methane, a common greenhouse gas. Dumesic and his colleagues tested over 300 catalysts to find one that could compete with platinum and perform in the APR process. Using a specially designed reactor that can test 48 samples at one time, the team finally found a match in a modified version of what researchers call a Raneynickel catalyst, named after Murray Raney, who first patented the alloy in 1927.

Raney-nickel is a porous catalyst made of about 90 percent nickel (Ni) and 10 percent aluminum (Al). While Raney-nickel proved somewhat effective at separating hydrogen from biomass-derived molecules, the researchers improved the material’s effectiveness by adding more tin (Sn), which stops the production of methane and instead generates more hydrogen. Relative to other catalysts, the Raney-NiSn can perform for long time periods (at least 48 hours) and at lower temperatures (roughly 225 degrees Celsius).

According to Dumesic, a substitute for platinum catalysts is essential for the success of hydrogen technology. "We had to find a substitute for platinum in our APR process for production of hydrogen, since platinum is rare and also employed in the anode and cathode materials of hydrogen fuel cells to be used in products such as cars or portable computers," he said.


Additional support for this research was provided by the U.S. Department of Energy (DOE) and by the Materials Research Science and Engineering Center on Nanostructured Materials and Interfaces at the University of Wisconsin, a center established and supported by NSF.


NSF STTR Program Officer: Rosemarie Wesson, 703-292-8330, rwesson@nsf.gov

Principal Investigator: James Dumesic, 608-262-1096, dumesic@engr.wisc.edu

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Josh Chamot | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>