Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fuel cells agreement: EU and US forge links to provide sustainable energy sources for the future


In the transition to a hydrogen economy, fuel cells could provide the planet with a sustainable energy supply to replace rapidly diminishing fossil fuels. Turning this vision into a reality took a further step forward today with the signing of a EU-US co-operation agreement on fuel cells technology. The agreement brokered by European Research Commissioner Philippe Busquin and the US Secretary or Energy, Mr. Spencer Abraham, aims to strengthen research links, by bringing together EU and US researchers from both the public and private sectors. Key challenges for fuel cells to become commercially competitive are cost reductions, improved performance and durability. Research and technological development will explore how these barriers can be overcome. The Commission and the US Government will discuss shortly joint EU-US research projects in this field.

Signing the agreement in Brussels, Commissioner Busquin said: “By pooling EU and US research efforts and resources, we improve our chances of finding a long-term solution to the world’s energy and transport problems. Through global scientific partnerships we can work together to develop fuel cell technologies to deliver viable, environmentally sustainable alternatives to fossil fuels. Today represents a landmark in energy research history: with this agreement and the publication of the summary report of the High Level Group on Hydrogen and Fuel Cells, we have made real progress towards building a sustainable future for Europe, the US and their peoples.”

"This agreement lays out the framework for our two entities to collaborate on a matter important to both the U.S. and the European Union – hydrogen research," said U.S. Energy Secretary Spencer Abraham. "The Fuel Cell Annex will help the U.S. Department of Energy and the European Commission leverage our approaches to hydrogen research. The Annex highlights the importance of our bilateral co-operation in the development of hydrogen as a clean form of energy."

Seven point plan

The signing of the agreement will drive forward the development of joint initiatives in seven fuel cell-related areas:

  • Transportation vehicles demonstrations, including fuelling infrastructure;

  • Fuel cells as Auxiliary Power Units;

  • Codes and standards, including for fuel infrastructure, vehicles and Auxiliary Power Units;

  • Fuel choice studies and socio-economic assessment of critical materials availability for low temperature fuel cells;

  • Solid Oxide Fuel Cells and high temperature fuel cell turbine hybrid systems;

  • Support Studies, including socio-economic assessment of critical rare earth materials for high temperature fuel cells; and

  • Direct Methanol and Polymer Electrolyte Membrane fuel cells for transportation and stationary applications.

But… what are fuel cells?

Fuel cells represent the potential energy solution of the future. They are efficient energy converters, which generate electricity and heat by chemically combining oxygen from the air and hydrogen from its fuel source without combustion or pollution. Research in the area of fuel cells has a leading role to play in the establishment of sustainable energy supply and the ability to provide affordable and clean energy without increasing green house gas emissions.

Fuel cells are a key driver to a hydrogen oriented economy and could, in the long term, replace combustion based conversion systems such as traditional engines or turbines. The hydrogen-oriented economy is a global challenge and international co-operation is essential to achieve its ambitious goals.

Joining forces to invest in a cleaner, more sustainable future

The EU is making substantial efforts to support activities in this field. Europe’s total public expenditure in this field is estimated at some €600 million for the 2002-2006 period (EU and Member States). Co-ordinating these efforts and stimulating private investment is crucial to building a competitive fuel cell industry in Europe.

Furthermore, on the other side of the Atlantic, the US administration has requested a budget of €1.7 billion over the next five years to be spent on the Freedom Car and Freedom Fuel Programmes, which include a heavy emphasis on hydrogen and fuel cells. The co-operation between the EU and the US, officially stated in the Fuel Cells Amendment signed today, represents a significant step forward in the strengthening of their scientific and technical relations and in the building-up of a global critical mass for research in this sector.

Fabio Fabbi | European Commission
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>