Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Portable CT Scanner Joins Hunt for Alternative Energy


Lawrence Berkeley National Laboratory (Berkeley Lab) scientists have developed the world’s first x-ray computed tomography (CT) scanner capable of examining entire core samples at remote drilling sites. The portable device, which employs the same high-resolution imaging technology used to diagnose diseases, could help researchers determine how to best extract the vast quantities of natural gas hidden under the world’s oceans and permafrost.

Berkeley Lab’s portable scanner has sailed the high seas and endured arctic cold, imaging more than 2000 feet of core sample along the way

A CT scan of a permafrost core reveals a mixture of sandstone and quartz fluvial grains cemented in an ice-sand matrix

The scanner images the distribution of gas hydrates in core samples pulled from deeply buried sediment. These hydrates are a latticework of water and methane that form an ice-like solid under high pressures and temperatures that hover just above freezing, conditions found in deep oceans and under Arctic permafrost. Scientists estimate the methane trapped in this crystalline mix may yield far more energy than the planet’s remaining reserves of fossil fuel.

But they must first determine how to find and remove it. As part of this investigational legwork, researchers drill into likely gas hydrate reserves and extract core samples. Select samples are then shipped to laboratories for analysis, and the resulting data is used to develop computer models that predict how gas hydrates behave in sediments, which may help researchers determine how to most efficiently locate and extract methane.

It’s a laborious process, however. Because gas hydrates rapidly decompose when brought to the surface, the samples must be preserved under high pressure and low temperatures, then shipped to labs hundreds of miles away. This means the data required for these powerful numerical models is harvested slowly, one carefully packaged-and-shipped core at a time.

Barry Freifeld, a mechanical engineer in Berkeley Lab’s Earth Sciences Division, wondered if real-time, on-site analysis could expedite this work. His optimism stemmed from earlier research in which he demonstrated that a medical CT scanner can image a wave of methane hydrate dissociating in a sand mixture.

“Nobody had ever done that before, and I asked why can’t we also do it in the field,” Freifeld says.

Unfortunately, most CT scanners weigh more than 1000 kilograms, are bolted to the floor, and are housed in lead-lined rooms. Portable they’re not. On the other hand, their ability to splice hundreds of x-ray scans into one cross-sectional image could enable researchers to map the distribution of gas hydrates in core samples in unprecedented detail. If only such power could be reduced in size and brought to the drill site.

Freifeld believed he knew how, and he got his break last spring after learning the drill ship JOIDES Resolution was scheduled to probe for gas hydrates off the Oregon coast. The vessel is operated by the Ocean Drilling Program, an international partnership of scientists and research institutions sponsored by the National Science Foundation and participating countries. The group had previously used conventional x-ray imaging aboard the ship to analyze core samples, but the images proved of marginal quality. When Freifield suggested x-ray CT, essentially offering laboratory-quality analysis on the high seas, the Ocean Drilling Program jumped at the chance.

His team received funding from the Department of Energy’s National Energy Technology Laboratory, and in five weeks built a refrigerator-sized, 300-kilogram scanner. They trucked it to Oregon’s Coos Bay, loaded it on a supply ship, sailed west overnight, and at daybreak hoisted it aboard the JOIDES Resolution as it drilled along the Cascadia Ridge in search of hydrates. Several hours later, the scanner analyzed its first core sample, and churned through 1500 feet of core over the next several weeks.

“We can run core through the scanner almost as quickly as they can pull it out,” says Freifeld “Now, researchers don’t have to send kilometers of core to a lab to get the same information they can obtain in the field. They’ll send data instead of rocks.”

Their success hinges on several innovations. Instead of a lead-lined room to protect operators from radiation, they developed a three-piece shield composed of a layer of lead sandwiched between two thin stainless steel layers. This arrangement reduces the amount of lead usually required to encapsulate x-ray imaging systems. And because x-rays passing through the center of the core are more attenuated than those passing through the edges, they designed a half-cylinder-shaped, aluminum compensator that flattens the image intensity and ensures high-resolution imaging throughout the core sample. In addition, special software reconstructs a 3-D image of a scanned core, giving an operator the freedom to observe the core’s interior from any angle and direction. And 3-D scans can be taken at a rate of three minutes per foot of core length, yielding resolutions between 50 and 200 microns.

“We’ve taken a million dollar medical instrument and transformed it into a rugged, $150,000 piece of equipment,” Freifeld says.

This winter, the hearty scanner traveled above the Arctic Circle to the permafrost stretches near Prudhoe Bay, Alaska. There, researchers are conducting the first test on U.S. soil concerning how to extract methane from gas hydrates. The scanner analyzed more than 500 feet of core sample, enabling researchers to generate the most detailed log of permafrost cores ever recorded. And the system worked in subzero temperatures.

“It ran fine, but the cold was hard on the technicians. We needed a lot of tea and coffee,” Freifeld says.

Luckily for Freifeld, the scanner is next headed to warmer climates. It’s scheduled for another hitch aboard the JOIDES Resolution as it sails from Bermuda to Newfoundland. The ship will drill along the continental margin and study rifting, the tectonic process by which the lithosphere thins and the seafloors spread. The scanner will allow scientists to generate the most detailed lithostratigraphic record ever constructed from oceanic cores.

“With this instrument, we can systematically investigate everything recovered and generate a detailed electronic record,” Freifeld says. “Its ability to conduct high-resolution imaging anywhere will have a large impact on energy exploration, mining and fundamental research.”

In addition to Freifeld, Tim Kneafsey, Jacob Pruess, Paul Reiter, and Liviu Tomutsa of Berkeley Lab’s Earth Sciences Division contributed to the development of the scanner.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Dan Krotz | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>