Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable CT Scanner Joins Hunt for Alternative Energy

13.06.2003


Lawrence Berkeley National Laboratory (Berkeley Lab) scientists have developed the world’s first x-ray computed tomography (CT) scanner capable of examining entire core samples at remote drilling sites. The portable device, which employs the same high-resolution imaging technology used to diagnose diseases, could help researchers determine how to best extract the vast quantities of natural gas hidden under the world’s oceans and permafrost.


Berkeley Lab’s portable scanner has sailed the high seas and endured arctic cold, imaging more than 2000 feet of core sample along the way


A CT scan of a permafrost core reveals a mixture of sandstone and quartz fluvial grains cemented in an ice-sand matrix



The scanner images the distribution of gas hydrates in core samples pulled from deeply buried sediment. These hydrates are a latticework of water and methane that form an ice-like solid under high pressures and temperatures that hover just above freezing, conditions found in deep oceans and under Arctic permafrost. Scientists estimate the methane trapped in this crystalline mix may yield far more energy than the planet’s remaining reserves of fossil fuel.

But they must first determine how to find and remove it. As part of this investigational legwork, researchers drill into likely gas hydrate reserves and extract core samples. Select samples are then shipped to laboratories for analysis, and the resulting data is used to develop computer models that predict how gas hydrates behave in sediments, which may help researchers determine how to most efficiently locate and extract methane.


It’s a laborious process, however. Because gas hydrates rapidly decompose when brought to the surface, the samples must be preserved under high pressure and low temperatures, then shipped to labs hundreds of miles away. This means the data required for these powerful numerical models is harvested slowly, one carefully packaged-and-shipped core at a time.

Barry Freifeld, a mechanical engineer in Berkeley Lab’s Earth Sciences Division, wondered if real-time, on-site analysis could expedite this work. His optimism stemmed from earlier research in which he demonstrated that a medical CT scanner can image a wave of methane hydrate dissociating in a sand mixture.

“Nobody had ever done that before, and I asked why can’t we also do it in the field,” Freifeld says.

Unfortunately, most CT scanners weigh more than 1000 kilograms, are bolted to the floor, and are housed in lead-lined rooms. Portable they’re not. On the other hand, their ability to splice hundreds of x-ray scans into one cross-sectional image could enable researchers to map the distribution of gas hydrates in core samples in unprecedented detail. If only such power could be reduced in size and brought to the drill site.

Freifeld believed he knew how, and he got his break last spring after learning the drill ship JOIDES Resolution was scheduled to probe for gas hydrates off the Oregon coast. The vessel is operated by the Ocean Drilling Program, an international partnership of scientists and research institutions sponsored by the National Science Foundation and participating countries. The group had previously used conventional x-ray imaging aboard the ship to analyze core samples, but the images proved of marginal quality. When Freifield suggested x-ray CT, essentially offering laboratory-quality analysis on the high seas, the Ocean Drilling Program jumped at the chance.

His team received funding from the Department of Energy’s National Energy Technology Laboratory, and in five weeks built a refrigerator-sized, 300-kilogram scanner. They trucked it to Oregon’s Coos Bay, loaded it on a supply ship, sailed west overnight, and at daybreak hoisted it aboard the JOIDES Resolution as it drilled along the Cascadia Ridge in search of hydrates. Several hours later, the scanner analyzed its first core sample, and churned through 1500 feet of core over the next several weeks.

“We can run core through the scanner almost as quickly as they can pull it out,” says Freifeld “Now, researchers don’t have to send kilometers of core to a lab to get the same information they can obtain in the field. They’ll send data instead of rocks.”

Their success hinges on several innovations. Instead of a lead-lined room to protect operators from radiation, they developed a three-piece shield composed of a layer of lead sandwiched between two thin stainless steel layers. This arrangement reduces the amount of lead usually required to encapsulate x-ray imaging systems. And because x-rays passing through the center of the core are more attenuated than those passing through the edges, they designed a half-cylinder-shaped, aluminum compensator that flattens the image intensity and ensures high-resolution imaging throughout the core sample. In addition, special software reconstructs a 3-D image of a scanned core, giving an operator the freedom to observe the core’s interior from any angle and direction. And 3-D scans can be taken at a rate of three minutes per foot of core length, yielding resolutions between 50 and 200 microns.

“We’ve taken a million dollar medical instrument and transformed it into a rugged, $150,000 piece of equipment,” Freifeld says.

This winter, the hearty scanner traveled above the Arctic Circle to the permafrost stretches near Prudhoe Bay, Alaska. There, researchers are conducting the first test on U.S. soil concerning how to extract methane from gas hydrates. The scanner analyzed more than 500 feet of core sample, enabling researchers to generate the most detailed log of permafrost cores ever recorded. And the system worked in subzero temperatures.

“It ran fine, but the cold was hard on the technicians. We needed a lot of tea and coffee,” Freifeld says.

Luckily for Freifeld, the scanner is next headed to warmer climates. It’s scheduled for another hitch aboard the JOIDES Resolution as it sails from Bermuda to Newfoundland. The ship will drill along the continental margin and study rifting, the tectonic process by which the lithosphere thins and the seafloors spread. The scanner will allow scientists to generate the most detailed lithostratigraphic record ever constructed from oceanic cores.

“With this instrument, we can systematically investigate everything recovered and generate a detailed electronic record,” Freifeld says. “Its ability to conduct high-resolution imaging anywhere will have a large impact on energy exploration, mining and fundamental research.”

In addition to Freifeld, Tim Kneafsey, Jacob Pruess, Paul Reiter, and Liviu Tomutsa of Berkeley Lab’s Earth Sciences Division contributed to the development of the scanner.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov/Science-Articles/Archive/ESD-CT-scanner.html

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>