Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Wind Power More Efficient

10.06.2003


A University of Ulster researcher has come up with a new method, using Artificial Intelligence techniques, to forecast wind energy more accurately than ever before.


Predicting how fast the wind will blow has always been a major problem for wind farm operators. It is essential that they have some idea of how much electricity they will be able to produce each day based on the strength of the wind.

Energy forecasting has become a critical factor in the efficient generation of power from wind turbines.

Piers Campbell and Dr Kenny Adamson, from the School of Computing and Mathematics, have employed Artificial Intelligence techniques to assess and learn from past wind flow patterns, subsequently predicting energy output up to twelve hours in advance, more precisely than ever before.



Mr Campbell, a researcher at the University, said: “There are forecasting models in existence in the UK and Ireland but they are highly inaccurate due to the fact that they were developed for a Danish market and their application in this country is simply not effective at the moment without further research.

“At present, the techniques that we have developed can forecast how much wind energy will be produced within a 12 percent margin and we hope to reduce that even further, current utility expectations work within a 50% margin of error.

“The need for forecasting is essential in increasing the competitiveness of wind energy as a renewable power source and in assisting integration with conventional power sources. The supply and demand of electricity is balanced in half-hourly trading periods and generators are required to forecast the amount of energy they will supply 3.5 hours ahead of delivery. The system then punishes generators for any imbalance, positive or negative. With such penalties in place, it is obvious how these new techniques are vital in improving the efficiency and cost effectiveness of wind farm operations.”

There are currently seven wind farm sites generating electricity in Northern Ireland, with a further eight in progress. At present, 1.8 percent of Northern Ireland’s electricity comes from renewables such as wind energy but the targets proposed by government aim to increase this to at least 15 percent by 2010.

Mr Campbell believes this is an attainable figure and one that Northern Ireland should be striving to excel: “The main advantage of wind power is that it is much cleaner and less polluting than fossil fuels. Wind energy plants produce no air pollutants or harmful green house gases that contribute to climate change.

“Using AI techniques we can also reduce the time it takes to assess an area for suitability as a wind farm site. Using current methods this can take up to one year but now we can evaluate a site much more quickly, enabling faster development of wind farms throughout the country.

“The technology will also enable developers to predict wind speeds and power output for the next 2 or 3 years rather than simply basing their assessments on the wind speeds measured over a single year.”

David Young | alfa
Further information:
http://www.ulst.ac.uk/news/releases/2003/785.html

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>