Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Wind Power More Efficient

10.06.2003


A University of Ulster researcher has come up with a new method, using Artificial Intelligence techniques, to forecast wind energy more accurately than ever before.


Predicting how fast the wind will blow has always been a major problem for wind farm operators. It is essential that they have some idea of how much electricity they will be able to produce each day based on the strength of the wind.

Energy forecasting has become a critical factor in the efficient generation of power from wind turbines.

Piers Campbell and Dr Kenny Adamson, from the School of Computing and Mathematics, have employed Artificial Intelligence techniques to assess and learn from past wind flow patterns, subsequently predicting energy output up to twelve hours in advance, more precisely than ever before.



Mr Campbell, a researcher at the University, said: “There are forecasting models in existence in the UK and Ireland but they are highly inaccurate due to the fact that they were developed for a Danish market and their application in this country is simply not effective at the moment without further research.

“At present, the techniques that we have developed can forecast how much wind energy will be produced within a 12 percent margin and we hope to reduce that even further, current utility expectations work within a 50% margin of error.

“The need for forecasting is essential in increasing the competitiveness of wind energy as a renewable power source and in assisting integration with conventional power sources. The supply and demand of electricity is balanced in half-hourly trading periods and generators are required to forecast the amount of energy they will supply 3.5 hours ahead of delivery. The system then punishes generators for any imbalance, positive or negative. With such penalties in place, it is obvious how these new techniques are vital in improving the efficiency and cost effectiveness of wind farm operations.”

There are currently seven wind farm sites generating electricity in Northern Ireland, with a further eight in progress. At present, 1.8 percent of Northern Ireland’s electricity comes from renewables such as wind energy but the targets proposed by government aim to increase this to at least 15 percent by 2010.

Mr Campbell believes this is an attainable figure and one that Northern Ireland should be striving to excel: “The main advantage of wind power is that it is much cleaner and less polluting than fossil fuels. Wind energy plants produce no air pollutants or harmful green house gases that contribute to climate change.

“Using AI techniques we can also reduce the time it takes to assess an area for suitability as a wind farm site. Using current methods this can take up to one year but now we can evaluate a site much more quickly, enabling faster development of wind farms throughout the country.

“The technology will also enable developers to predict wind speeds and power output for the next 2 or 3 years rather than simply basing their assessments on the wind speeds measured over a single year.”

David Young | alfa
Further information:
http://www.ulst.ac.uk/news/releases/2003/785.html

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>