Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Powering Fuel Cells: Oxide Materials that "Exhale and Inhale" May Facilitate Small-scale Hydrogen Production


Researcher Zhong Wang shows a selection of rare earth oxide materials that are being studied for possible use in the production of small-scale quantities of hydrogen for powering fuel cells.
Georgia Tech Photo: Gary Meek

Oxides of three rare earth materials are being studied for possible use in the production of small-scale quantities of hydrogen for powering fuel cells.
Georgia Tech Photo: Gary Meek

A unique group of oxide materials that readily gives up and accepts oxygen atoms with changes in temperature could be the basis for a small-scale hydrogen production system able to power fuel cells in homes -- and potentially in automotive applications.

Scientists have long known that oxides of the rare earth elements cerium (Ce), terbium (Tb), and praseodymium (Pr) can produce hydrogen from water vapor and methane in continuous "inhale and exhale" cycles. By doping iron atoms into the oxides, researchers at the Georgia Institute of Technology have lowered the temperatures at which these "oxygen pump" materials produce hydrogen, potentially allowing the process to be powered by solar energy.

"This is a new approach for producing hydrogen that has several advantages compared to conventional production technology," said Zhong L. Wang, a professor in Georgia Tech’s School of Materials Science and Engineering and director of the Center for Nanoscience and Nanotechnology. "For some applications, particularly those in the home, this could provide an alternative way to supply hydrogen for small-scale fuel cells."

Traditional reforming processes use metallic catalysts and temperatures in excess of 800 degrees Celsius to produce hydrogen from hydrocarbons such as methane. While efficient in industrial-scale production, the traditional reforming process may not be ideal for the small-scale hydrogen production needed to power fuel cells in homes or vehicles.

By operating at lower temperatures, the oxide system being developed at Georgia Tech could provide a lower-cost alternative that uses less energy and less water to operate.

The system would take advantage of the oxides’ unique crystalline structure, which allows as much as 20 percent of the oxygen atoms to leave the lattice without structural damage. That would permit cycling oxygen atoms out of and back into the structure through a sequence of oxidation and reduction processes that both produce hydrogen, first from methane and then from water vapor. By providing an oxygen supply, the oxide system could reduce the amount of water required for hydrogen production.

First, temperatures of 700 degree Celsius drive oxygen out of the material, where it oxidizes carbon in the methane to form carbon oxides and free hydrogen. Temperatures as low as 375 degrees Celsius are then used to reduce water vapor, pulling oxygen from water to replenish the crystalline structure -- producing more hydrogen.

"By cycling the temperature back and forth in the presence of methane or water, you can continuously produce hydrogen," Wang said.

Although the use of rare-earth oxides such as cerium oxide as catalysts for hydrogen production has been known for some time, the addition to iron to those oxides by the Georgia Tech researchers has significantly enhanced the surface chemistry activity of these materials, allowing the oxidation and reduction reactions to take place at lower temperatures. Wang believes the reaction temperatures may be lowered farther by "tuning" the iron content and understanding the trade-offs between reaction efficiency and temperature.

Lowering the reaction temperature to 350 degrees could allow solar energy to supply at least some of the heat needed. Relying on the use of a renewable energy source could make the process more attractive to home users and remote locations.

"If you can get the temperature low enough, this would facilitate hydrogen production with renewable energy," Wang noted. "If you can use solar energy to produce hydrogen, that opens up a lot of new possibilities."

Using a small laboratory furnace, Wang and collaborator Zhenchuan Kang cycled test materials through the temperature changes over a period of hours to study reaction dynamics. In a larger furnace, the temperature swings could be produced more rapidly. Wang envisions scaling up the process using a larger furnace in which the oxide materials could be shuttled back and forth between temperature zones for alternating oxidation and reduction reactions.

In the experimental set-up, hydrogen production is measured by feeding the reaction products from the furnace through a proton membrane fuel cell. The flow of electrical current from the fuel cell provides a measure of the hydrogen production at different temperatures and levels of iron doping in the oxides.

Wang has not observed sharp transition in the efficiency of the reaction as a function of temperatures, but rather temperature zones within which the oxidation or reaction reactions occur with varying efficiencies.

Though the process might be scaled up to produce large volumes of hydrogen, Wang believes its true promise is for small-scale systems. "In many cases, high volume is not what you need, especially when you consider cost and energy input," he said. "We are excited about this technology and its potential applications for the new hydrogen economy."

For the future, Wang wants to optimize iron doping and study the tradeoff between reaction temperature and efficiency. Lower reaction efficiency could be tolerated if it allowed the use of solar energy for a portion of the process, he notes.

"The next step is to find the optimal level of iron doping and how low the temperature can go while still producing hydrogen," Wang said. "There is a large amount of tuning possible for the iron doping."

John Toon | Georgia Tech
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>