Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project pairs coal with fuel cells to create cleaner, more efficient power

30.05.2003


Ohio University engineers are leading one of the first comprehensive efforts to examine how fuel cell technology could pave the way for cleaner coal-fired power plants. Supported by a $4 million U.S. Department of Energy grant secured by the Ohio Congressional delegation, the project aims to find ways to use coal – the environmentally dirtiest but most abundant fossil fuel in the world -- to harness high-efficiency fuel cells.



Most government-sponsored energy research is focused on using natural gas to power fuel cells because it is the cleanest burning of all the fossil fuels. Ohio University researchers, however, say it’s critical to begin exploring ways to use coal as a catalyst for fuel cells because it is more abundant and less expensive than natural gas.

"We need to find ways to make coal work for us," said David Bayless, an associate professor of mechanical engineering in the Russ College of Engineering and Technology and director of the Ohio Coal Research Center. "After all, coal reserves are expected to last for at least the next 250 years, compared to 30 years for natural gas."


Fuel cells are electrochemical devices that convert chemical energy into electricity and heat. Like a battery that never needs recharging, a fuel cell will run indefinitely as long as chemical energy is present. There are several different types of fuel cells, but they’re all based on a central design that consists of two electrodes sandwiched around an electrolyte.

Fuel cells appeal to many in the energy industry because they generate electricity with little pollution and are highly efficient, using 80 to 90 percent of their energy compared to a 40 to 50 percent productivity rate with traditional combustion. In fact, the Ohio University project is part of a larger national effort by the U.S. Department of Energy’s Hydrogen, Fuel Cells and Infrastructure Technologies Program to study and develop viable fuel cell power.

Bayless and other researchers in the Ohio Coal Research Center propose teaming fuel cells with coal-derived gas, or syngas. Rather than burning coal directly, coal gasification mixes coal with steam, air and oxygen under high temperatures and pressures, resulting in chemical reactions that form a gaseous mixture of hydrogen and carbon monoxide. When introduced to fuel cells, this gas is transformed into water, producing electricity and heat in the process.

But because syngas contains hazardous contaminants such as sulfur and mercury that can damage fuel cells, Ohio University researchers need to figure out how to effectively integrate syngas with fuel cells. During the next few years, they plan to conduct experiments to see how various syngas contaminants affect fuel cells by measuring decreases or changes in fuel cell voltage, temperature, pressure and other performance-related factors.

"Once we figure out what’s happening, we can try to create better, stronger fuel cells that can withstand these contaminants or test various ways of reducing coal contaminants using current cleaning technology," said Assistant Professor of Chemical Engineering Gerardine Bötte, who is helping Bayless conduct experiments. "At this point, though, we don’t know where our research will take us."

Bayless is focusing on integrating syngas with planar solid oxide fuel cells, which are tile-shaped cells made of ceramic. But he sees coal eventually becoming an energy source for a variety of high-tech fuel cells being developed to power automobiles, laptops and homes. "I have a larger vision for coal that includes applications in many areas," Bayless says. "It’s exciting because not much is known in this field, so this gives us a chance to explore some new ideas."

One idea, he adds, is to merge the fuel cell work with another Ohio University project that uses algae to control greenhouse gas emissions from coal-fired power plants. The harvested algae could be converted into hydrogen, which would then be used to power the fuel cells, he explains.

The fuel cell project, estimated at $6.4 million, is the largest undertaken by the Ohio Coal Research Center, which studies ways to make the region’s coal a more viable energy source. It’s an effort that attracted support from the Ohio Congressional delegation – particularly through the work of U.S. Reps. David Hobson and Ralph Regula and Sen. Mike DeWine, with support from district Rep. Ted Strickland – which secured the $4 million federal appropriation for the fuel cell technology project, said Pamela Siemer, assistant vice president for external relations at Ohio University.

"Senator DeWine and Representatives Hobson, Regula and Strickland are committed to having Ohio coal included as part of the nation’s long-term plan to assure clean and abundant energy," Siemer said. "The university is deeply grateful for their commitment to Ohio coal, and particularly for the hard work in support of this innovative fuel cell project."


Additional funds beyond the four-year, $4 million grant provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy will come from Ohio University and project collaborators, including Case Western Reserve University, the Alliance, Ohio-based fuel cell company SOFCo and Nordic Energy.

Written by Melissa Rake Calhoun.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu/researchnews/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>