Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Project pairs coal with fuel cells to create cleaner, more efficient power


Ohio University engineers are leading one of the first comprehensive efforts to examine how fuel cell technology could pave the way for cleaner coal-fired power plants. Supported by a $4 million U.S. Department of Energy grant secured by the Ohio Congressional delegation, the project aims to find ways to use coal – the environmentally dirtiest but most abundant fossil fuel in the world -- to harness high-efficiency fuel cells.

Most government-sponsored energy research is focused on using natural gas to power fuel cells because it is the cleanest burning of all the fossil fuels. Ohio University researchers, however, say it’s critical to begin exploring ways to use coal as a catalyst for fuel cells because it is more abundant and less expensive than natural gas.

"We need to find ways to make coal work for us," said David Bayless, an associate professor of mechanical engineering in the Russ College of Engineering and Technology and director of the Ohio Coal Research Center. "After all, coal reserves are expected to last for at least the next 250 years, compared to 30 years for natural gas."

Fuel cells are electrochemical devices that convert chemical energy into electricity and heat. Like a battery that never needs recharging, a fuel cell will run indefinitely as long as chemical energy is present. There are several different types of fuel cells, but they’re all based on a central design that consists of two electrodes sandwiched around an electrolyte.

Fuel cells appeal to many in the energy industry because they generate electricity with little pollution and are highly efficient, using 80 to 90 percent of their energy compared to a 40 to 50 percent productivity rate with traditional combustion. In fact, the Ohio University project is part of a larger national effort by the U.S. Department of Energy’s Hydrogen, Fuel Cells and Infrastructure Technologies Program to study and develop viable fuel cell power.

Bayless and other researchers in the Ohio Coal Research Center propose teaming fuel cells with coal-derived gas, or syngas. Rather than burning coal directly, coal gasification mixes coal with steam, air and oxygen under high temperatures and pressures, resulting in chemical reactions that form a gaseous mixture of hydrogen and carbon monoxide. When introduced to fuel cells, this gas is transformed into water, producing electricity and heat in the process.

But because syngas contains hazardous contaminants such as sulfur and mercury that can damage fuel cells, Ohio University researchers need to figure out how to effectively integrate syngas with fuel cells. During the next few years, they plan to conduct experiments to see how various syngas contaminants affect fuel cells by measuring decreases or changes in fuel cell voltage, temperature, pressure and other performance-related factors.

"Once we figure out what’s happening, we can try to create better, stronger fuel cells that can withstand these contaminants or test various ways of reducing coal contaminants using current cleaning technology," said Assistant Professor of Chemical Engineering Gerardine Bötte, who is helping Bayless conduct experiments. "At this point, though, we don’t know where our research will take us."

Bayless is focusing on integrating syngas with planar solid oxide fuel cells, which are tile-shaped cells made of ceramic. But he sees coal eventually becoming an energy source for a variety of high-tech fuel cells being developed to power automobiles, laptops and homes. "I have a larger vision for coal that includes applications in many areas," Bayless says. "It’s exciting because not much is known in this field, so this gives us a chance to explore some new ideas."

One idea, he adds, is to merge the fuel cell work with another Ohio University project that uses algae to control greenhouse gas emissions from coal-fired power plants. The harvested algae could be converted into hydrogen, which would then be used to power the fuel cells, he explains.

The fuel cell project, estimated at $6.4 million, is the largest undertaken by the Ohio Coal Research Center, which studies ways to make the region’s coal a more viable energy source. It’s an effort that attracted support from the Ohio Congressional delegation – particularly through the work of U.S. Reps. David Hobson and Ralph Regula and Sen. Mike DeWine, with support from district Rep. Ted Strickland – which secured the $4 million federal appropriation for the fuel cell technology project, said Pamela Siemer, assistant vice president for external relations at Ohio University.

"Senator DeWine and Representatives Hobson, Regula and Strickland are committed to having Ohio coal included as part of the nation’s long-term plan to assure clean and abundant energy," Siemer said. "The university is deeply grateful for their commitment to Ohio coal, and particularly for the hard work in support of this innovative fuel cell project."

Additional funds beyond the four-year, $4 million grant provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy will come from Ohio University and project collaborators, including Case Western Reserve University, the Alliance, Ohio-based fuel cell company SOFCo and Nordic Energy.

Written by Melissa Rake Calhoun.

Andrea Gibson | EurekAlert!
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>