Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project pairs coal with fuel cells to create cleaner, more efficient power

30.05.2003


Ohio University engineers are leading one of the first comprehensive efforts to examine how fuel cell technology could pave the way for cleaner coal-fired power plants. Supported by a $4 million U.S. Department of Energy grant secured by the Ohio Congressional delegation, the project aims to find ways to use coal – the environmentally dirtiest but most abundant fossil fuel in the world -- to harness high-efficiency fuel cells.



Most government-sponsored energy research is focused on using natural gas to power fuel cells because it is the cleanest burning of all the fossil fuels. Ohio University researchers, however, say it’s critical to begin exploring ways to use coal as a catalyst for fuel cells because it is more abundant and less expensive than natural gas.

"We need to find ways to make coal work for us," said David Bayless, an associate professor of mechanical engineering in the Russ College of Engineering and Technology and director of the Ohio Coal Research Center. "After all, coal reserves are expected to last for at least the next 250 years, compared to 30 years for natural gas."


Fuel cells are electrochemical devices that convert chemical energy into electricity and heat. Like a battery that never needs recharging, a fuel cell will run indefinitely as long as chemical energy is present. There are several different types of fuel cells, but they’re all based on a central design that consists of two electrodes sandwiched around an electrolyte.

Fuel cells appeal to many in the energy industry because they generate electricity with little pollution and are highly efficient, using 80 to 90 percent of their energy compared to a 40 to 50 percent productivity rate with traditional combustion. In fact, the Ohio University project is part of a larger national effort by the U.S. Department of Energy’s Hydrogen, Fuel Cells and Infrastructure Technologies Program to study and develop viable fuel cell power.

Bayless and other researchers in the Ohio Coal Research Center propose teaming fuel cells with coal-derived gas, or syngas. Rather than burning coal directly, coal gasification mixes coal with steam, air and oxygen under high temperatures and pressures, resulting in chemical reactions that form a gaseous mixture of hydrogen and carbon monoxide. When introduced to fuel cells, this gas is transformed into water, producing electricity and heat in the process.

But because syngas contains hazardous contaminants such as sulfur and mercury that can damage fuel cells, Ohio University researchers need to figure out how to effectively integrate syngas with fuel cells. During the next few years, they plan to conduct experiments to see how various syngas contaminants affect fuel cells by measuring decreases or changes in fuel cell voltage, temperature, pressure and other performance-related factors.

"Once we figure out what’s happening, we can try to create better, stronger fuel cells that can withstand these contaminants or test various ways of reducing coal contaminants using current cleaning technology," said Assistant Professor of Chemical Engineering Gerardine Bötte, who is helping Bayless conduct experiments. "At this point, though, we don’t know where our research will take us."

Bayless is focusing on integrating syngas with planar solid oxide fuel cells, which are tile-shaped cells made of ceramic. But he sees coal eventually becoming an energy source for a variety of high-tech fuel cells being developed to power automobiles, laptops and homes. "I have a larger vision for coal that includes applications in many areas," Bayless says. "It’s exciting because not much is known in this field, so this gives us a chance to explore some new ideas."

One idea, he adds, is to merge the fuel cell work with another Ohio University project that uses algae to control greenhouse gas emissions from coal-fired power plants. The harvested algae could be converted into hydrogen, which would then be used to power the fuel cells, he explains.

The fuel cell project, estimated at $6.4 million, is the largest undertaken by the Ohio Coal Research Center, which studies ways to make the region’s coal a more viable energy source. It’s an effort that attracted support from the Ohio Congressional delegation – particularly through the work of U.S. Reps. David Hobson and Ralph Regula and Sen. Mike DeWine, with support from district Rep. Ted Strickland – which secured the $4 million federal appropriation for the fuel cell technology project, said Pamela Siemer, assistant vice president for external relations at Ohio University.

"Senator DeWine and Representatives Hobson, Regula and Strickland are committed to having Ohio coal included as part of the nation’s long-term plan to assure clean and abundant energy," Siemer said. "The university is deeply grateful for their commitment to Ohio coal, and particularly for the hard work in support of this innovative fuel cell project."


Additional funds beyond the four-year, $4 million grant provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy will come from Ohio University and project collaborators, including Case Western Reserve University, the Alliance, Ohio-based fuel cell company SOFCo and Nordic Energy.

Written by Melissa Rake Calhoun.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu/researchnews/

More articles from Power and Electrical Engineering:

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

nachricht Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields
15.02.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>