Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A more efficient, lighter device that generates up to three times more electricity from waves

20.05.2003


The world’s oceans hold the key to our future electricity needs. And their potential for producing power has yet to be fully exploited in terms of sustainable energy. The EUREKA WWEC project team hopes to bring exploitation of this renewable energy source a big step forward.



“We’ve developed a device that generates energy from the sea as easily as a wind turbine would do on land,” explains William Dick, managing director of the Irish company Wavebob that led the project. “There’s an awful lot of electricity to be had in the North Atlantic.”

Flouting convention, the EUREKA WWEC project team looked to develop a commercially licensable technology that could be deployed far out at sea in large arrays. “There’s much more power available offshore because waves lose energy as they come into shallower water,” explains Dick.


Floating largely below the water surface, self-reacting and loosely moored, the Wavebob developed by the WWEC project converts the energy of ocean waves into electricity.

Along with partners from Norway and the UK, Wavebob developed technology based on a heaving buoy. Unlike a familiar floating buoy, this pulls against a reaction mass, typically a massive plate or the sea bed, as it rises and falls. Up to now such devices have serious problems, there are practical limits to the reaction mass that may be carried, and they may oscillate too violently in big seas, “In the Wavebob, we have found effective and low cost solutions to these problems, - it is a significant technical breakthrough,” claims Dick.

The breakthrough is based on several innovations - an ability to recover power from big waves and to tune the buoy to varying sea-states.

“To date devices are built to match the most common wave frequency (the ’’spectral frequency’’) of the chosen site and then be less efficient when the wave climate changes. If the wave differs a lot from the design frequency, the device will sometimes be left just wallowing in the waves,” explains Dick. “The Wavebob is the first device that may be easily and rapidly tuned across a range of frequencies using on-board intelligence or remotely – making it much more efficient.”

It can also be quickly de-tuned, vitally important for survival in the North Atlantic where the 100-year extreme seas may reach 35 metres in height. Much of the R&D and design criteria have been focussed on the matter of survival, - ocean storms are hard taskmasters.

A lighter system means an impressive watts per tonne ratio and lower costs in offshore installation and mooring systems. The size depends on the local wave climate, as a device built for the North Atlantic would weigh several times more than one sized for the Eastern Mediterranean.

Dick found the additional status that comes with being part of a EUREKA project of particular value. “EUREKA has been important because it’s a sort of rubber stamp. It says look, the Ministerial Conference has looked at this, they like what you’re doing. It’s an endorsement,” he says.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/wwec

More articles from Power and Electrical Engineering:

nachricht New welding process joins dissimilar sheets better
28.09.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Cooling buildings with solar heat
26.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>