Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory Researchers Hope to "Sunproof" Solar Cells

09.04.2003


Computer Simulations Provide Insight On Light Degradation Effect in Solar Cells



Scientists at the U.S. Department of Energy’s Ames Laboratory and Iowa State University’s Microelectronics Research Center may have solved a mystery that has plagued the research community for more than 20 years: Why do solar cells degrade in sunlight? Finding the answer to that question is essential to the advancement of solar cell research and the ability to produce lower-cost electricity from sunlight.

"The basic problem is that when you put solar cells in sunlight, the efficiency starts to decrease by as much as 15 percent to 20 percent over a period of several days," said Rana Biswas, a physicist at Ames Laboratory and the MRC. "Obviously, that’s not good."


Solar cells made from hydrogenated amorphous silicon, a noncrystalline form of silicon, absorb light far more effectively than traditional crystalline silicon solar cells. "Instead of a thick, 20-micron crystalline silicon film, you can just deal with a very thin, half-micron amorphous silicon film," said Biswas. "These cells are more cost-effective as they involve much less material and processing time - driving forces for industry. However, although amorphous silicon absorbs light very efficiently, it suffers from this degradation effect - that’s the bad news."

Biswas and his co-workers have been studying the troublesome degradation effect, also known as the Staebler-Wronski effect, for the past few years. The effort includes investigations into the atomic origins of the S-W effect and the subsequent exploration of possible new solar cell materials through computer molecular dynamics simulations.

Biswas explained that exposure to light can cause changes in hydrogenated amorphous silicon, resulting in defects known as metastable dangling bonds - bonds that can go away only when heated to a high temperature. Dangling bonds are missing a neighbor to which they can bond. To remedy the situation, they will "capture" electrons, reducing the electricity that light can produce and decreasing solar cell efficiencies. "The question," Biswas said, "is how does light create the dangling bonds?"

The answer has long been a mystery, but now Biswas and his co-workers, Bicai Pan and Yiying Ye, are helping resolve many puzzling aspects of the problem with their three-step atomistic rebonding model. The model is based on rearrangements of silicon and hydrogen atoms in the hydrogenated amorphous silicon material. In the first step, sunlight creates excited electrons and holes (vacant electron energy states) in the material. When the electrons recombine, they pair up with holes on the weak silicon bonds. The recombination energy causes the weak silicon bonds to break, creating silicon dangling bond-floating bond pairs. During the second step, the floating bonds break away from the dangling bonds and move freely throughout the material. This occurs when the extra floating bond from one silicon atom moves to a neighboring silicon atom. The third step reveals that the short-lived floating bonds disappear. Some recombine with the silicon dangling bonds, which results in no material defects. Others "hop" away from the dangling bonds and are annihilated when hydrogen atoms in the network move into the floating bond sites.

Biswas’ three-step rebonding model shows that defect creation in hydrogenated amorphous silicon solar cells is initially driven by the breaking of weak silicon bonds followed by the rebonding of both silicon and hydrogen sites in the material. The research represents a significant achievement in understanding the atomic origins of the light-induced degradation effect in hydrogenated amorphous silicon and so provides a vantage point for eliminating this effect in the development of new solar cell materials - a task on which Biswas is now focusing his efforts.

To improve the efficiency and reliability of solar cells, Biswas and his co-workers are investigating mixed-phase solar cell materials - a mixture of clusters of nanocrystalline silicon embedded in an amorphous matrix. "One of the most promising developments has been the success of hydrogen-diluted materials grown at the edge of crystallinity - the phase boundary between microcrystalline and amorphous film growth," said Biswas. "These materials and solar cells made from them have a much greater stability to light-induced degradation than traditional amorphous material."

By developing molecular dynamics computer simulations, Biswas hopes to learn more about this mixed-phase material at the atomic level and discover what aspect of the mixture is responsible for the improved material properties. His research efforts may even extend to manipulating the nanoscale structure of the material, allowing the design and creation of improved materials.

The research is funded by DOE’s Energy Efficiency and Renewable Energy Office through the National Renewable Energy Laboratory and is administered by the Institute for Physical Research and Technology, a network of research and technology-transfer centers at ISU. The American Chemical Society provided start-up funds. Ames Laboratory is operated for the DOE by ISU. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Rana Biswas | DOE/Ames Laboratory
Further information:
http://www.external.ameslab.gov/News/release/2003rel/solar.html
http://www.external.ameslab.gov/

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>