Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Z produces fusion neutrons, Sandia scientists confirm

07.04.2003


Huge pulsed power machine enters fusion arena



Throwing its hat into the ring of machines that offer the possibility of achieving controlled nuclear fusion, Sandia National Laboratories’ Z machine has created a hot dense plasma that produces thermonuclear neutrons, Sandia researchers announced today at a news conference at the April meeting of the American Physical Society in Philadelphia.

The neutrons emanate from fusion reactions within a BB-sized deuterium capsule placed within the target of the huge machine. Compressing hot dense plasmas that produce neutrons is an important step toward realizing ignition, the level at which the fusion reaction becomes self-sustaining.


The amount of energy a larger successor to Z could bring to bear offers the still-later possibility of high-yield fusion -- the state in which much more energy is released than is needed to provoke the reaction initially to occur. The excess energy could be used for applications such as the generation of electricity, said Tom Mehlhorn, a project leader on the machine.

Z causes reactions to occur neither by confining low density plasmas in dimensionally huge magnetic fields, as do tokomaks, nor by focusing intense laser beams on or around a target, as in laser fusion, but simply through the application of huge pulses of electricity applied with very sophisticated timing. The pulse creates an intense magnetic field that crushes tungsten wires into a foam cylinder to produce X-rays. The X-ray energy, striking the surface of the target capsule embedded in the cylinder, produces a shock wave that compresses the deuterium within the capsule, fusing enough deuterium to produce neutrons.

"Pulsed power electrical systems have always been energy-rich but power-poor," said Ray Leeper, a Sandia manager. "That is, we can deliver a lot of energy, but it wasn’t clear we could concentrate it on a small enough area to create fusion. Now it seems clear we can do that."

A partial confirmation of the result came about when theoretical predictions and lab outcomes were determined to be of the same order of magnitude. Predictions and measurements of the neutron yield were both of the order of 10 billion neutrons. The predicted neutron yield depends on the ion density temperature and volume. Those quantities were independently confirmed by X-ray spectroscopy measurements.

Neutron pulses were observed as early as last summer but researchers were wary that the output was produced by interactions between the target and ions generated by Z’s processes, rather than within the capsule itself. Ion-generated neutrons were not the point of the experiment, since they would not scale up into a high-yield event in any later, more powerful version of Z.

But a series of experiments completed in late March demonstrated that the production was within the capsule itself. To show this, researchers inserted xenon gas within the capsule. The gas prevented the capsule from getting hot during compression. Thus, the neutron yield dropped dramatically, as predicted.

The action takes place within a container the size of a pencil eraser, called a hohlraum, at the center of the Z machine, itself a circular device about 120 feet in diameter.

Sandia researchers Jim Bailey and Gordon Chandler led the experimental team and Steve Slutz performed theortical calculations. Sandian Carlos Ruiz and Gary Cooper of the University of New Mexico performed the neutron measurements.


Sandia Media Relations Contact: Neal Singer, (505) 845-7078, nsinger@sandia.gov

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2003/nuclear-power/Zneutrons.html
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>