Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photonic crystals to improve microwave circuits


The principal aim of this PhD paper was the application of the new concepts and ideas of Photonic Crystals and Photonic Bandgap (PBG) to microwave and millimetric circuits and, more concretely, to microstrip circuits which is the most common technology in current use in flat microwave circuits.

Thus, for this thesis, the techniques for optimising the functioning of PBG structures in microstrip technology were studied and the various practical applications of these devices were analysed. For example, a number of microwave circuit designs have been presented which have enhanced functions thanks to the introduction of PBG structures (filters, resonators, oscillators). The results obtained have been very satisfactory and have given rise to structures with highly interesting optimised functions.

These filters, resonators and oscillators optimised through the introduction of PBG structures can provide significant improvements to those currently used in satellite communications. These new designs can contribute to the perfecting of communication between earth stations and the satellite without having to increase the complexity of either the part installed in the home or of the satellite and, thus, can enhance the quality of communication without provoking an increase in the cost of the service.

Also, another important area of application of this thesis is the third generation of mobile phones (UMTS) which is an ambitious evolution of a mobile telephone communications system as we know and which will provide much greater flexibility in its use and services. This new mobile phone has very strict quality requirements for the communications circuits and a number of the devices proposed in this PhD thesis have precisely those optimised functions which make them attractive for this new generation of mobile phones.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
(+34) 948 16 97 82

Iñaki Casado Redin | Basque Research
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>