Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering Microsystems Assembly Technology Could Lead To Cheaper, More Advanced Electronic Products

28.03.2003


The manufacture of electronic devices such as the new generation of video mobile phones could be revolutionised thanks to assembly research being pioneered at the University of Greenwich.



This research will provide industry with the microsystems assembly technology to allow cheaper mass production of the next generation of intelligent products, such as mobiles, visual display equipment and medical devices. It could, for example, be used to develop minute ’invisible’ hearing aids.

Rajkumar Durairaj, a research fellow in the university’s Medway School of Engineering, was invited to the House of Commons to exhibit his work on the project, entitled ’Microsystems Assembly Technology for the 21st Century’, during a reception for Britain’s Young Engineers in December.


He explains: "Microsystems are expected to be the next logical step in the silicon revolution which began over three decades ago with the introduction of the first integrated circuit. We, in the Electronics Manufacturing Engineering Research Group, are working on a multidisciplinary
project to identify a process route to integrate microsystems-based components using low-cost manufacturing methods."

This project concentrates on integrating low-cost ’flip-chips’ - the latest electronic micro-chips - in existing manufacturing processes for intelligent consumer products. In addition to gains in production volumes and lower retail costs, the MEMS technology, which includes flexible printed circuit boards, will allow the creation of smaller devices with even more functions.

Until now, microsystems-based technology has been mainly reserved for the space industry rather than consumer products. The automotive industry is starting to employ Micro-Electro-Mechanical Systems (MEMS) to produce cars which can switch on their own lights and windscreen wipers.

The project, which is being led by Professor Ndy Ekere, Head of the Medway School of Engineering, began in June 2001 with £150,000 funding from the EPSRC (Engineering & Physical Sciences Research Council), with the option of extension for a further year to 2004 under EPSRC’s Research Assistant Industry Secondment Scheme.

As part of a parallel EPSRC-funded project, Professor Chris Bailey and his group, from the University of Greenwich School of Computing & Mathematical Sciences, and Dr Marc Desmulliez, from the Microsystems Engineering Centre at Heriot Watt University, are researching the performance of Microsystems assembly in terms of their in-service
reliability. The projects are being supported by various partners in industry, including Celestica UK, a world leader in the delivery of innovative electronics manufacturing services, DEK Printing Machines, Merlin Circuits, Micro Emissive Display and Alpha Fry Technology.

Christina Cherry | alfa
Further information:
http://www.gre.ac.uk/pr/pressreleases/791.htm

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>