Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering Microsystems Assembly Technology Could Lead To Cheaper, More Advanced Electronic Products

28.03.2003


The manufacture of electronic devices such as the new generation of video mobile phones could be revolutionised thanks to assembly research being pioneered at the University of Greenwich.



This research will provide industry with the microsystems assembly technology to allow cheaper mass production of the next generation of intelligent products, such as mobiles, visual display equipment and medical devices. It could, for example, be used to develop minute ’invisible’ hearing aids.

Rajkumar Durairaj, a research fellow in the university’s Medway School of Engineering, was invited to the House of Commons to exhibit his work on the project, entitled ’Microsystems Assembly Technology for the 21st Century’, during a reception for Britain’s Young Engineers in December.


He explains: "Microsystems are expected to be the next logical step in the silicon revolution which began over three decades ago with the introduction of the first integrated circuit. We, in the Electronics Manufacturing Engineering Research Group, are working on a multidisciplinary
project to identify a process route to integrate microsystems-based components using low-cost manufacturing methods."

This project concentrates on integrating low-cost ’flip-chips’ - the latest electronic micro-chips - in existing manufacturing processes for intelligent consumer products. In addition to gains in production volumes and lower retail costs, the MEMS technology, which includes flexible printed circuit boards, will allow the creation of smaller devices with even more functions.

Until now, microsystems-based technology has been mainly reserved for the space industry rather than consumer products. The automotive industry is starting to employ Micro-Electro-Mechanical Systems (MEMS) to produce cars which can switch on their own lights and windscreen wipers.

The project, which is being led by Professor Ndy Ekere, Head of the Medway School of Engineering, began in June 2001 with £150,000 funding from the EPSRC (Engineering & Physical Sciences Research Council), with the option of extension for a further year to 2004 under EPSRC’s Research Assistant Industry Secondment Scheme.

As part of a parallel EPSRC-funded project, Professor Chris Bailey and his group, from the University of Greenwich School of Computing & Mathematical Sciences, and Dr Marc Desmulliez, from the Microsystems Engineering Centre at Heriot Watt University, are researching the performance of Microsystems assembly in terms of their in-service
reliability. The projects are being supported by various partners in industry, including Celestica UK, a world leader in the delivery of innovative electronics manufacturing services, DEK Printing Machines, Merlin Circuits, Micro Emissive Display and Alpha Fry Technology.

Christina Cherry | alfa
Further information:
http://www.gre.ac.uk/pr/pressreleases/791.htm

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>