Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion trek through polymer offers better batteries

21.03.2003


Cell phones, CD players and flashlights all wear down batteries far faster than we might wish. But there’s new hope, now that researchers at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) have overcome another barrier to building more powerful, longer-lasting lithium-based batteries.



The INEEL team, led by inorganic chemist Thomas Luther, discovered how lithium ions move through the flexible membrane that powers their patented rechargeable lithium battery. Research results are currently published online, and in the April 24, 2003, print issue of the Journal of Physical Chemistry B.

Luther calls their translucent polymer membrane an ’inorganic version of plastic kitchen wrap.’ The team, including chemists Luther, Mason Harrup and Fred Stewart, created it in 2000 by adding a ceramic powder to a material called MEEP ([bis(methoxyethoxyethoxy) phosphazene]), an oozy, thick oil. The resulting solid, pliable membrane lets positively charged lithium ions pass through to create the electrical circuit that powers the battery, but rebuffs negatively charged electrons. This keeps the battery from running down while it sits on the shelf-overcoming a major battery-life storage problem.


For years, rechargeable lithium battery performance has been disappointing because the batteries needed recharging every few days. After conquering the discharge challenge, INEEL’s team attacked the need for greater battery power to be commercially competitive. Their membrane didn’t allow sufficient passage of lithium ions to produce enough power, so they needed to understand exactly how the lithium ions move through the membrane on a molecular level.

First, they analyzed the MEEP membrane using nuclear magnetic resonance-the equivalent of a hospital MRI-to zero in on the best lithium ion travel routes. The results supported the team’s suspicion that the lithium ions travel along the ’backbone’ of the membrane. The MEEP membrane has a backbone of alternating phosphorus and nitrogen molecules, with oxygen-laden ’ribs’ attached to the phosphorus molecules.

Further analysis using infrared and raman spectroscopy (techniques that measure vibrational frequencies and the bonds between different nuclei) helped confirm that the lithium ions are most mobile when interacting with nitrogen. Lithium prefers to nestle into a "pocket" created by a nitrogen molecule on the bottom with oxygen molecules from a MEEP rib on either side.

Armed with this new understanding of how lithium moves through the solid MEEP membrane, the team has already starting making new membrane versions to optimize lithium ion flow. And that should make the team’s lithium batteries much more powerful.

The team’s research results are a major departure from the conventionally accepted explanation of lithium ion transport that proposed the lithium/MEEP transport mechanism as jumping from one rib to the next using the oxygen molecules as stepping stones.

Harrup, Stewart and Luther are optimistic their battery design will ultimately change the battery industry. The team projects that its polymer membrane will be so efficient at preventing battery run down, that batteries could sit unused for up to 500 months between charges with no loss of charge. Since the membrane is a flexible solid, it can be molded into any shape-which could open up new applications for batteries. And the membrane is very temperature tolerant-with the potential to solve portable power need problems in the frigid cold of space. The team is already working with several federal agencies on applications for its lithium battery designs.

The reference for the paper describing this research is "On the Mechanism of Ion Transport Through Polyphosphazene Solid Polymer Electrolytes: NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N Labeled Polyphosphazenes," Journal of Physical Chemistry B. INEEL authors include Thomas Luther, Fred Stewart, Randall A. LaViolette, William Bauer and Mason K. Harrup. The work was also supported by Christopher Allen of the University of Vermont in Burlington, Vt.


###
The INEEL is a science-based applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Technical contact: Thomas A. Luther, (208) 526-0203, luthta@inel.gov; Mason K. Harrup, (208) 526-1356, harrmk@inel.gov.
Media contact: Deborah Hill, (208) 526-4723, dahill@inel.gov; Keith Arterburn, (208) 526-4845, artegk@inel.gov.


Deborah Hill | EurekAlert!
Further information:
http://www.inel.gov/

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>