Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ion trek through polymer offers better batteries


Cell phones, CD players and flashlights all wear down batteries far faster than we might wish. But there’s new hope, now that researchers at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) have overcome another barrier to building more powerful, longer-lasting lithium-based batteries.

The INEEL team, led by inorganic chemist Thomas Luther, discovered how lithium ions move through the flexible membrane that powers their patented rechargeable lithium battery. Research results are currently published online, and in the April 24, 2003, print issue of the Journal of Physical Chemistry B.

Luther calls their translucent polymer membrane an ’inorganic version of plastic kitchen wrap.’ The team, including chemists Luther, Mason Harrup and Fred Stewart, created it in 2000 by adding a ceramic powder to a material called MEEP ([bis(methoxyethoxyethoxy) phosphazene]), an oozy, thick oil. The resulting solid, pliable membrane lets positively charged lithium ions pass through to create the electrical circuit that powers the battery, but rebuffs negatively charged electrons. This keeps the battery from running down while it sits on the shelf-overcoming a major battery-life storage problem.

For years, rechargeable lithium battery performance has been disappointing because the batteries needed recharging every few days. After conquering the discharge challenge, INEEL’s team attacked the need for greater battery power to be commercially competitive. Their membrane didn’t allow sufficient passage of lithium ions to produce enough power, so they needed to understand exactly how the lithium ions move through the membrane on a molecular level.

First, they analyzed the MEEP membrane using nuclear magnetic resonance-the equivalent of a hospital MRI-to zero in on the best lithium ion travel routes. The results supported the team’s suspicion that the lithium ions travel along the ’backbone’ of the membrane. The MEEP membrane has a backbone of alternating phosphorus and nitrogen molecules, with oxygen-laden ’ribs’ attached to the phosphorus molecules.

Further analysis using infrared and raman spectroscopy (techniques that measure vibrational frequencies and the bonds between different nuclei) helped confirm that the lithium ions are most mobile when interacting with nitrogen. Lithium prefers to nestle into a "pocket" created by a nitrogen molecule on the bottom with oxygen molecules from a MEEP rib on either side.

Armed with this new understanding of how lithium moves through the solid MEEP membrane, the team has already starting making new membrane versions to optimize lithium ion flow. And that should make the team’s lithium batteries much more powerful.

The team’s research results are a major departure from the conventionally accepted explanation of lithium ion transport that proposed the lithium/MEEP transport mechanism as jumping from one rib to the next using the oxygen molecules as stepping stones.

Harrup, Stewart and Luther are optimistic their battery design will ultimately change the battery industry. The team projects that its polymer membrane will be so efficient at preventing battery run down, that batteries could sit unused for up to 500 months between charges with no loss of charge. Since the membrane is a flexible solid, it can be molded into any shape-which could open up new applications for batteries. And the membrane is very temperature tolerant-with the potential to solve portable power need problems in the frigid cold of space. The team is already working with several federal agencies on applications for its lithium battery designs.

The reference for the paper describing this research is "On the Mechanism of Ion Transport Through Polyphosphazene Solid Polymer Electrolytes: NMR, IR, and Raman Spectroscopic Studies and Computational Analysis of 15N Labeled Polyphosphazenes," Journal of Physical Chemistry B. INEEL authors include Thomas Luther, Fred Stewart, Randall A. LaViolette, William Bauer and Mason K. Harrup. The work was also supported by Christopher Allen of the University of Vermont in Burlington, Vt.

The INEEL is a science-based applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Technical contact: Thomas A. Luther, (208) 526-0203,; Mason K. Harrup, (208) 526-1356,
Media contact: Deborah Hill, (208) 526-4723,; Keith Arterburn, (208) 526-4845,

Deborah Hill | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>