Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the efficiency of hydropower stations

12.03.2003


Hydroelectric power provides 16 per cent of Europe’s electricity, but most of the plants and their turbines were designed many years ago. By redesigning the runner - the propeller-like component that transfers energy from the water to the drive shaft in the turbine - EUREKA project FLINDT enables operators to harness more power from their turbines.

According to Professor François Avellan, Director of the Swiss main project partner, Laboratoire de Machines Hydrauliques de l’ EPFL, Ecole polytechnique fédérale de Lausanne, the project can also help hydropower stations store power and manage peak demands.

He says, “hydropower stations are managed too conservatively. Small adjustments, within safety parameters, to the runner of the hydraulic machine can dramatically improve the output from existing hydropower plants.”



The challenge the project faced was to understand and predict the complex fluid dynamics within the "draft tube" containing the runner. The draft tube is a key component in hydropower stations as it converts the kinetic energy of the water into pressure energy that can be utilised to drive turbines.

The partners spent thousands of hours investigating the flow in draft tubes using computer models and a scale model. This provided a better understanding of the physics of such flows, allowing the partners to build up an extensive experimental database and enabling the project to avoid undesirable phenomena such as “flow blockage” and other dangerous instabilities when redesigning runners. The knowledge gained can now be applied to improve the output of existing hydropower stations, adding significantly to the European power generation economy.

Water is returned to the river after use. Therefore, in addition to the direct environmental benefits of renewable energy, the project also has indirect benefits: a better understanding of the flow characteristics within the draft tube allows better control of the mixing process in this component, in particular the stresses and the air diffusion, which is of prime importance for the local river life.

The original FLINDT project ran from 1997 to 2000 but the partners agreed to extend the project by two years to carry out further research and are now looking to set up other research projects to investigate safety and reliability issues to push hydroplants to even greater efficiency.

According to Prof. Avellan the project had three major benefits - an increased knowledge about flow through draft tubes, development of the draft flow database and education of the PhD students involved with the project.

"EUREKA’s unique bottom-up approach brought together competitors in a very aggressive market to co-operate in research that benefits all,” he says.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/flindt

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>