Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny computing machine fueled by DNA

25.02.2003


The device was awarded the Guinness World Record for "smallest biological computing device"



Fifty years after the discovery of the structure of DNA, a new use has been found for this celebrated molecule: fuel for molecular computation systems. The research, conducted by scientists at the Weizmann Institute of Science, will appear in this week’s issue of Proceedings of the National Academy of Sciences USA (PNAS).

Whether plugged in or battery powered, computers need energy. Around a year ago, Prof. Ehud Shapiro of the Weizmann Institute made international headlines for devising a programmable molecular computing machine composed of enzymes and DNA molecules. Now his team has made the device uniquely frugal: the single DNA molecule that provides the computer with the input data also provides all the necessary fuel.


The source of fuel of the earlier device was a molecule called ATP, the standard energy currency of all life forms. The redesigned device processes its DNA input molecule using only spontaneous, energy releasing operations. It breaks two bonds in the DNA input molecule, releasing the energy stored in these bonds as heat. This process generates sufficient energy to carry out computations to completion without any external source of energy.

A spoonful (5 milliliters) of "computer soup" can contain 15,000 trillion such computers, together performing 330 trillion operations per second with 99.9% accuracy per step. These computers need very little energy (all supplied, as mentioned, by the input molecule) and together release less than 25 millionths of a watt as heat.

The device was recently awarded the Guinness World Record for "smallest biological computing device."


###
The study was carried out by Yaakov Benenson, Dr. Rivka Adar, Dr. Tamar Paz-Elizur, Prof. Zvi Livneh and Prof. Ehud Shapiro of the Institute’s Biological Chemistry Department and the Computer Science and Applied Mathematics Department.

Prof. Ehud Shapiro’s research is supported by the Dolfi and Lola Ebner Center for Biomedical Research, Yad Hanadiv, the Robert Rees Fund for Applied Research and the Samuel R. Dweck Foundation.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/udi
http://www.weizmann.ac.il/

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>