Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny computing machine fueled by DNA


The device was awarded the Guinness World Record for "smallest biological computing device"

Fifty years after the discovery of the structure of DNA, a new use has been found for this celebrated molecule: fuel for molecular computation systems. The research, conducted by scientists at the Weizmann Institute of Science, will appear in this week’s issue of Proceedings of the National Academy of Sciences USA (PNAS).

Whether plugged in or battery powered, computers need energy. Around a year ago, Prof. Ehud Shapiro of the Weizmann Institute made international headlines for devising a programmable molecular computing machine composed of enzymes and DNA molecules. Now his team has made the device uniquely frugal: the single DNA molecule that provides the computer with the input data also provides all the necessary fuel.

The source of fuel of the earlier device was a molecule called ATP, the standard energy currency of all life forms. The redesigned device processes its DNA input molecule using only spontaneous, energy releasing operations. It breaks two bonds in the DNA input molecule, releasing the energy stored in these bonds as heat. This process generates sufficient energy to carry out computations to completion without any external source of energy.

A spoonful (5 milliliters) of "computer soup" can contain 15,000 trillion such computers, together performing 330 trillion operations per second with 99.9% accuracy per step. These computers need very little energy (all supplied, as mentioned, by the input molecule) and together release less than 25 millionths of a watt as heat.

The device was recently awarded the Guinness World Record for "smallest biological computing device."

The study was carried out by Yaakov Benenson, Dr. Rivka Adar, Dr. Tamar Paz-Elizur, Prof. Zvi Livneh and Prof. Ehud Shapiro of the Institute’s Biological Chemistry Department and the Computer Science and Applied Mathematics Department.

Prof. Ehud Shapiro’s research is supported by the Dolfi and Lola Ebner Center for Biomedical Research, Yad Hanadiv, the Robert Rees Fund for Applied Research and the Samuel R. Dweck Foundation.

Alex Smith | EurekAlert!
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>