Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab experiment generates THz radiation 20,000 times brighter than anyone else

28.01.2003


An experiment conducted by the Department of Energy’s Jefferson Lab generates THz radiation 20,000 times brighter than anyone else; breakthrough lights way for application development

Experiment generates THz radiation 20,000 times brighter than anyone else; breakthrough lights way for application development

An experiment conducted with Jefferson Lab’s Free-Electron Laser has shown how to make a highly useful form of light -- called terahertz radiation -- 20,000 times brighter than ever before. Jefferson Lab is a Department of Energy laboratory located in Newport News, Virginia.



The name "terahertz radiation" derives from the frequency of the radiation -- of the order of one trillion oscillations per second. The corresponding wavelength is of the order of tenths of a millimeter. Terahertz radiation is thus located in the spectrum of electromagnetic radiation between the upper end of the microwave range (mm wavelength) and the far infrared (hundredths of mm).

Terahertz radiation is non-ionizing and shares with microwaves the capability to penetrate a wide variety of non-conducting materials.

Gwyn Williams, JLab’s Free-Electron Laser Basic Research Program manager, conceived and led the multi-laboratory team conducting the experiment, which took place during November 2001. The results were published in the Nov. 14, 2002, issue of the international science journal Nature.

Among the prospective benefits, the breakthrough lights the way toward better detection of concealed weapons, hidden explosives and land mines; improved medical imaging and more productive study of cell dynamics and genes; real-time "fingerprinting" of chemical and biological terror materials in envelopes, packages or air; better characterization of semiconductors; and widening the frequency bands available for wireless communication.

To produce for the first time ever, intense terahertz radiation, researchers from JLab and two other Department of Energy laboratories -- Brookhaven National Lab and Lawrence Berkeley National Lab -- made use of the fact that the driver linac of JLab’s Free-Electron Laser is made up of intense electron bunches that are a few tenths of a millimeter long, i.e. comparable to the wavelength of terahertz radiation. Sending any energetic electron beam through a magnetic field makes the beam emit radiation, so-called synchrotron radiation, a process that is greatly enhanced (coherent synchrotron radiation) when the length of the electron bunches is as short or shorter than the radiation wavelength of interest.

Researchers paving way for T-ray applications

For over a decade, scientists worldwide have been pressing the study of light in the terahertz region and looking for better ways to generate and use it. The light is also referred to occasionally as T-rays, T-light or T-lux. An August 16 Science magazine article, "Revealing the Invisible," reported that "much research is being directed toward the development of T-ray sources and detectors, particularly for applications in medical imaging and security scanning systems." Xi-Cheng Zhang, a T-ray expert at Rensselaer Polytechnic Institute, predicts that terahertz light will be "the future ’killer application’ ... in biomedicine."

Picometrix Tochigi Nikon Corporation and Teraview -- a Cambridge, England, start-up associated with Toshiba -- have begun commercializing low-power terahertz systems. A few hospitals are already testing comparatively dim sources of terahertz light for detecting skin cancer.

Overall, though, terahertz light still constitutes a gap in the science of light and energy. It inhabits a region of the electromagnetic spectrum not that well understood. Now that a way to generate it at high power has been demonstrated, terahertz light can potentially extend and add widely to the wave-based technologies that have defined the last 150 years: from the telegraph, radio and X-rays to computers, and cell phones.

Up to this point, no other method of generating terahertz waves had yielded more than two-thousandths of a watt in power. But Williams and his colleagues extracted nearly 20 watts -- some 20,000 times more. "Think of a candle and then think of a floodlight," says Williams.

But no matter how bright they are, terahertz light rays can’t penetrate metal or water. So they can’t be used to inspect cargo containers on arriving ships or to diagnose conditions deep inside the human body."Nevertheless," says Williams, "the growing awareness of terahertz light’s usefulness is like what happened a century ago with X-rays -- only terahertz light will have a much wider range of applications. The task now will be to develop those uses."

Bringing 10-year-old idea to fruition

About 10 years ago Williams wrote a paper proposing a method for generating large amounts of terahertz light. In the mid-90s he started following the development of JLab’s Free-Electron Laser. Williams came to Jefferson Lab from Brookhaven National Lab in the spring of 2000; he actively began pursuing his experiment last June, when he drove a van to Brookhaven to bring back a spectrometer on loan from his old laboratory. Kevin Jordan and George Neil, both JLab staff, soon had it installed and proof-of-principle experiments took place. The final run, with a better spectrometer and detector, took place in early November 2001 and included Larry Carr from Brookhaven, and Michael Martin and Wayne McKinney from Lawrence Berkeley National Lab.

"We didn’t create something new," Williams explains. "The terahertz light had always been there inside of the FEL’s vacuum-sealed beam pipe. We just figured out how to open the pipe, put in a window to let the light out, and how to measure it. Williams is looking forward to performing proof-of-principle experiments of the capabilities of THz light with the upgraded FEL and a newly designed section of FEL beam pipe that should allow even more of the light out.

Williams and his collaborators presented their results at the First International Conference on terahertz Radiation in December of 2001, and shortly thereafter he wrote the experiment up and submitted it to Nature. Due to the novel arena, it took some time before the paper was accepted, but it finally was.

While the U.S. Navy funded the FEL’s construction to investigate the science and technology of high-power laser beams whose precise wavelength can be selected, the funding to run Williams’ and his colleagues’ experiment was from the Commonwealth of Virginia.

Linda Ware | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>