Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jefferson Lab technology takes center stage in the construction of SNS accelerator


Jefferson Lab is once again taking center stage, as Lab scientists, engineers and technicians mobilize to provide 81 niobium cavities for 23 cryomodules for the Spallation Neutron Source under construction in Oak Ridge, Tennessee

Thermos bottles usually don’t weigh nearly five tons or measure almost 26 feet end-to-end. But these aren’t run-of-the-mill containers for soup or coffee. Rather, they’re the complex, state-of-the-art supercooled components in which particle beams are accelerated for scientific research.

The Department of Energy’s Jefferson Lab technology is once again taking center stage, as Lab scientists, engineers and technicians mobilize to provide what eventually will be 81 niobium cavities for 23 cryomodules for a new federal laboratory, the Spallation Neutron Source, or SNS, under construction in Oak Ridge, Tennessee. JLab is part of a team of federal laboratories -- including Argonne, Brookhaven, Lawrence Berkeley, Los Alamos and Oak Ridge -- assisting in the design, engineering and construction of the $1 billion-plus SNS, which will provide the most intense pulsed-neutron beams in the world for scientific research and industrial development. JLab is located in Newport News, Virginia.

"We’re definitely world leaders in this kind of technology. We’ve been trailblazers," says Isidoro Campisi, senior scientist with JLab’s Institute for Superconducting Radio Frequency Science & Technology. "We’re helping to make another generation of machines become practical."

The Lab’s engineers and technicians are creating two types of cryomodules. One is known as the "medium ? (beta)," version with three cavities per module, and is thus shorter and lighter than its four-cavity "high ?" sibling. As at JLab, superconducting radiofrequency techniques and advanced cryomodule design are being incorporated within the SNS accelerator complex to enable low-cost, high-efficiency operation.

Because the speed (represented by the ? symbol) of the SNS’s negative hydrogen-ion beam will be slightly less than the electron beam in JLab’s accelerator, the internal structure of the cavities was slightly adjusted, or "graded," to match the reduced velocities. Therefore, the shape of SNS niobium cavities are flatter ellipses, more like oversized pancakes than their fatter CEBAF predecessors. The operating frequency of RF cavities is measured in cycles per second, given the name hertz to honor the 19th century German physicist Heinrich Hertz, who carried out numerous experiments to clarify the nature of electromagnetic radiation. Most RF cavities operate at very high frequencies, where the appropriate unit is millions of hertz, or megahertz (MHz). SNS cavities operate at 805 MHz, compared to 1497 MHz for CEBAF cavities.

Electromagnetic power is fed into the superconducting cavities via RF couplers. The SNS couplers have been designed to handle a much higher power level than the original CEBAF couplers and so provide a pulsed power -- SNS operates in pulses and not in a continuous wave as CEBAF does -- with a peak value of over 100 times that of the CEBAF couplers. Campisi was responsible for development of the high-power RF coupler required for the SNS modules. "For the first time, we’re making superconducting elliptical cavities not matched to the speed of light," he points out. "Everybody is pretty excited. We’ve been working hard to get to this point. We’re the youngest of the federal labs involved in the SNS project, so we’re happy that we can deliver on what we promised."

Prototype takes "test" road trip

In October, a prototype SNS cryomodule was taken on a road trip from Newport News to Virginia’s mountains near Charlottesville. Campisi says the sojourn was essential to test the modules’ many sensitive parts -- among them the "window" that allows for the introduction of radio waves, the vacuum seals between the inner cavity and the outer cryomodule, and the welds that hold everything together -- to withstand the inevitable insults of highway travel.

"All cryomodules made here will go by truck to Oak Ridge," he explains. "So we had to evaluate all the factors in that trip. What would happen when you go over bumps in the road, or if you stopped quickly or had to accelerate suddenly? We have to make sure all parts are working correctly before we dare put power in."

In most respects, the SNS cryomodules are virtually identical to their JLab cousins. The innermost components of the cryomodules’ three-part system includes the superconducting cavities, a cooling tank to hold the liquid helium, and a Thermos-bottle-like structure known as a cryostat that provides insulation -- allowing the cavities to remain cooled to two Kelvin, or nearly absolute zero. At such a temperature the surface currents associated with the introduced radio waves lose all electrical resistance, and provide acceleration with a power dissipation of less than a millionth of that used in energizing accelerators made of normally-conducting materials, such as copper.

At the SNS, four different linear accelerators, or linacs, will accelerate a beam of hydrogen ions to 1 billion electron volts, or 1 GeV. The first three accelerators, the Radio Frequency Quadrupole (RFQ), the drift-tube linac and the coupled-cavity linac, will be made from copper, operate at room temperature and accelerate the beam to 187 million electron volts. The fourth accelerator will make use of JLab cryomodules and accelerate the hydrogen-ion beam an additional 813 MeV. Sixty times per second, the accelerator will produce a one millisecond-long burst of hydrogen ions, a pulse that would stretch for about 270 kilometers (or 168 miles) if the beam were not intercepted. Instead, the beam is wrapped around a ring of magnets, called an accumulator ring, until the whole pulse has been captured in roughly 1,000 turns, like wire on a spool. Then, the opening of an electromagnetic gate allows all the accumulated ions to be delivered to the mercury target in a single microsecond-long pulse. The resultant short, sharp bursts of neutrons are what researchers will be using for their neutron-scattering investigations.

When the SNS facility is complete, researchers will be able to obtain detailed snapshots of material structure, and stop-action images of molecules in motion. Like a strobe light providing high-speed illumination of an object, the SNS will produce pulses of neutrons every 17 milliseconds, with more than 10 times more neutrons than are produced at the most powerful pulsed-neutron sources currently available. The neutrons will scatter from materials under study in such a way as to reveal that material’s subatomic structure and properties.

JLab’s first SNS cryomodule, the medium-beta prototype, passed its travel test and has been shipped to Oak Ridge. Other production models will follow, with the first tested perhaps as early as January 2003 and shipped the following month. SNS construction is slated to be complete by 2006.

By James Schultz

Linda Ware | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>



Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

More VideoLinks >>>