Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kaixo, classifier of photoelectric cells

17.01.2003


Currently there is great talk of renewable energies and, amongst these solar energy is highly important. In order to harness and utilise this form of energy there are many technologies available of which one is solar panels. These panels are made up of photoelectric cells (the 80-100 little square units in any one panel).



Photoelectric cells are classified according to the power they produce, given that total power production of any panel can be limited by just one photoelectric cell of lower power production. Why is this? Because this cell has a maximum current and does not allow the transmission of more. The total current – and power – of the panel is thus limited.

From prototypes to machines


In the 90’s, in response to a request from the Isofoton company, the Bilbao Institute of Microelectronic Technology, TiM, proposed the development of an advanced system for the measurement of photoelectric cells. This photoelectric cell classifier was named Kaixo (“Hello” in the Basque language).

The initial proposal was shortly transformed into a prototype. But this prototype, although carrying out measurements correctly, was not completely automated.

But, in 1998, given the then development of renewable energies, many companies underwent considerable growth, Isofoton amongst them. So much so that today Isofoton is the first in Europe and seventh worldwide in the manufacture of photoelectric cells. That same year, Isofoton commissioned TiM a second prototype.

That second prototype had to be more automated and more precise than the first. To this end, light and temperature stability had to be far more strictly controlled. Also, the second prototype had to be suited to the industrial world, so that maintenance operations could be efficiently carried out and the classifier easily inserted on the photoelectric cell production line, in a more automated manner.

6 or 7 machines of the new prototype have been made. These machines measure the 60,000 photoelectric cells which Isofoton manufacture daily. Moreover, these measurements can be carried out while the cells are being manufactured, without interruption to the production line. Thus, if a defective cell is produced, the process by which the defect arises can be identified. Before the existence of the prototypes, all measurements were carried out manually, automation meaning much better precision in measurement and a significant saving in time.

Better solar panels

Currently there are a number of research projects under way which are targeting the increase in power produced by each cell. This is because to meet the energy needs of a family home, solar panels of about 20-30 m2 are required. If the power potential of the cells can be increased, the size of the panels could be reduced. This is important considering that the greater the surface area of the panels, the greater the cost (more cells are needed, more wiring, more glass, etc.).

For the immediate future TIM will continue to carry out research to enhance and optimise manufacturing processes, to obtain more efficient cells and a more automated industry.


Notes

Project director:
Juan Carlos Jimeno eta Victor Martinez
Research team:
J.C. Jimeno, V. Martinez, R. Gutierrez, F. Recart, G. Bueno, F. Hernando, Mª J. Saenz, Mª V. Rodriguez, C. Ikaran, S. Uriarte
Faculty:
Technological Institute of Microelectronics


Contact :
Garazi Andonegi
Elhuyar Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | BasqueResearch
Further information:
http://tim.ehu.es

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>