Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation solar cells could put power stations in space

08.01.2003


RIT scientists develop nanomaterials for NASA program



Someday, large-scale solar power stations in space could beam electricity to the surface of the moon, the earth and other planets, decreasing our dependence on a dwindling fossil-fuel supply.

Scientists at Rochester Institute of Technology are developing the next generation of solar cells, advancing the technology that could put a solar power system into earth’s orbit.


The National Science Foundation recently awarded a three-year, $200,000 grant to Ryne Raffaelle and Thomas Gennett, co-directors of RIT’s NanoPower Research Laboratory, to develop nanomaterials--no bigger than a billionth of a meter--in support of NASA’s space solar power program.

The notion of space solar power--discounted as farfetched and silly after the energy crunch of the 1970s--never completely went away. Some scientists and other visionaries remained intrigued by the idea of orbiting, football-field sized "blankets" of solar cells that could generate tremendous amounts of power. NASA’s program is revisiting the idea, pushing the latest technology as far as it will go.

Raffaelle and Gennett are working with scientists from the Ohio Aerospace Institute and Phoenix Innovations Inc. to develop a new-and-improved solar cell that is light, thin and highly efficient. This solar cell, a thin-film device, will sandwich tiny granules of semi-conductor material, known as Quantum dots, and carbon nanotubes.

"In order to put football-field sized arrays in space, they need to be lightweight and flexible, and able to withstand the rigors of space," Raffaelle says. "Today’s technology isn’t good enough, but with the theoretical possibilities offered by nanomaterials it could become a reality."

Gennett adds: "The types of solar cells that we are working to develop are a clear departure from even the most advanced crystalline solar cells used in the space industry today. If we are successful it will result in a complete paradigm shift in space solar power generation."


Rochester Institute of Technology’s Nanopower Research Laboratory in the College of Science conducts research on the generation and storage of energy using nanostructured materials, especially photovoltaic, waste heat recovery, and battery- and fuel-cell research.

For breaking news stories, hot-topic trend pieces and interesting perspectives, visit RIT’s news site and online experts database. To connect with RIT subject matter experts, searchable by name and expertise, go to http://www.rit.edu/news and click on "RIT Experts."

Susan Murphy | EurekAlert!
Further information:
http://www.rit.edu/
http://www.rit.edu/news

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>