Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation solar cells could put power stations in space

08.01.2003


RIT scientists develop nanomaterials for NASA program



Someday, large-scale solar power stations in space could beam electricity to the surface of the moon, the earth and other planets, decreasing our dependence on a dwindling fossil-fuel supply.

Scientists at Rochester Institute of Technology are developing the next generation of solar cells, advancing the technology that could put a solar power system into earth’s orbit.


The National Science Foundation recently awarded a three-year, $200,000 grant to Ryne Raffaelle and Thomas Gennett, co-directors of RIT’s NanoPower Research Laboratory, to develop nanomaterials--no bigger than a billionth of a meter--in support of NASA’s space solar power program.

The notion of space solar power--discounted as farfetched and silly after the energy crunch of the 1970s--never completely went away. Some scientists and other visionaries remained intrigued by the idea of orbiting, football-field sized "blankets" of solar cells that could generate tremendous amounts of power. NASA’s program is revisiting the idea, pushing the latest technology as far as it will go.

Raffaelle and Gennett are working with scientists from the Ohio Aerospace Institute and Phoenix Innovations Inc. to develop a new-and-improved solar cell that is light, thin and highly efficient. This solar cell, a thin-film device, will sandwich tiny granules of semi-conductor material, known as Quantum dots, and carbon nanotubes.

"In order to put football-field sized arrays in space, they need to be lightweight and flexible, and able to withstand the rigors of space," Raffaelle says. "Today’s technology isn’t good enough, but with the theoretical possibilities offered by nanomaterials it could become a reality."

Gennett adds: "The types of solar cells that we are working to develop are a clear departure from even the most advanced crystalline solar cells used in the space industry today. If we are successful it will result in a complete paradigm shift in space solar power generation."


Rochester Institute of Technology’s Nanopower Research Laboratory in the College of Science conducts research on the generation and storage of energy using nanostructured materials, especially photovoltaic, waste heat recovery, and battery- and fuel-cell research.

For breaking news stories, hot-topic trend pieces and interesting perspectives, visit RIT’s news site and online experts database. To connect with RIT subject matter experts, searchable by name and expertise, go to http://www.rit.edu/news and click on "RIT Experts."

Susan Murphy | EurekAlert!
Further information:
http://www.rit.edu/
http://www.rit.edu/news

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>