Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation solar cells could put power stations in space

08.01.2003


RIT scientists develop nanomaterials for NASA program



Someday, large-scale solar power stations in space could beam electricity to the surface of the moon, the earth and other planets, decreasing our dependence on a dwindling fossil-fuel supply.

Scientists at Rochester Institute of Technology are developing the next generation of solar cells, advancing the technology that could put a solar power system into earth’s orbit.


The National Science Foundation recently awarded a three-year, $200,000 grant to Ryne Raffaelle and Thomas Gennett, co-directors of RIT’s NanoPower Research Laboratory, to develop nanomaterials--no bigger than a billionth of a meter--in support of NASA’s space solar power program.

The notion of space solar power--discounted as farfetched and silly after the energy crunch of the 1970s--never completely went away. Some scientists and other visionaries remained intrigued by the idea of orbiting, football-field sized "blankets" of solar cells that could generate tremendous amounts of power. NASA’s program is revisiting the idea, pushing the latest technology as far as it will go.

Raffaelle and Gennett are working with scientists from the Ohio Aerospace Institute and Phoenix Innovations Inc. to develop a new-and-improved solar cell that is light, thin and highly efficient. This solar cell, a thin-film device, will sandwich tiny granules of semi-conductor material, known as Quantum dots, and carbon nanotubes.

"In order to put football-field sized arrays in space, they need to be lightweight and flexible, and able to withstand the rigors of space," Raffaelle says. "Today’s technology isn’t good enough, but with the theoretical possibilities offered by nanomaterials it could become a reality."

Gennett adds: "The types of solar cells that we are working to develop are a clear departure from even the most advanced crystalline solar cells used in the space industry today. If we are successful it will result in a complete paradigm shift in space solar power generation."


Rochester Institute of Technology’s Nanopower Research Laboratory in the College of Science conducts research on the generation and storage of energy using nanostructured materials, especially photovoltaic, waste heat recovery, and battery- and fuel-cell research.

For breaking news stories, hot-topic trend pieces and interesting perspectives, visit RIT’s news site and online experts database. To connect with RIT subject matter experts, searchable by name and expertise, go to http://www.rit.edu/news and click on "RIT Experts."

Susan Murphy | EurekAlert!
Further information:
http://www.rit.edu/
http://www.rit.edu/news

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>