Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Station crew, scientists fine-tune zeolite experiment

20.12.2002


The Zeolite Crystal Growth (ZCG) experiment got off to a successful start this week aboard the International Space Station.


Expedition Six Commander Ken Bowersox uses a portable plastic enclosure called the Maintenance Work Area on Dec. 16, 2002, to prepare Zeolite Crystal Growth sample tubes for processing. Hard as a rock, yet able to absorb liquids and gases like a sponge, zeolites form the backbone of the chemical processes industry on Earth. By using the International Space Station’s microgravity environment to grow larger, better quality crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes. (Credit: NASA/JSC)



Hard as a rock, yet able to absorb liquids and gases like a sponge, zeolites form the backbone of the chemical processes industry. Virtually all the world’s gasoline is produced or upgraded using zeolites. Improving zeolites could make gasoline production more efficient or lead to ways of storing clean-burning hydrogen for fuel. Zeolites can also be applied to detergents, optical cables, gas and vapor detectors for environmental monitoring.

The microgravity environment of the Space Station allows scientists to grow higher-quality crystals that are 100 to 500 times larger than normal for analysis and test the crystallization process in “slow motion” without being rushed by the effects of gravity.


On Monday, Expedition Six Commander Ken Bowersox used a Space Station drill to mix 12 zeolite samples in clear tubes to evaluate how much to mix the actual test samples the next day. Scientists on the ground watching on TV noticed bubbles in the samples, which could cause smaller crystals and worked together with Bowersox to develop some changes in the mixing process.

On Tuesday, Bowersox used the modified mixing procedure to process 15 of the 19 autoclaves to isolate the bubbles believed to be in the samples. He then re-inserted the samples in the ZCG furnace in EXPRESS Rack 2 in the Station’s Destiny Laboratory. The experiment then began a heat-up and cool-down cycle that will last just over 15 days.

“The exciting thing is we are using the crew to make intelligent decisions,” said Dr. Al Sacco, Jr., principal investigator for the experiment. “It has already helped in the sense we’ve seen more bubbles in these solutions than we anticipated. These bubbles could cause larger numbers of smaller, deformed crystals to grow.”

“In real time, we changed some of our procedures, said Sacco, director of the Center for Advanced Microgravity Materials Processing (CAMMP) at Northeastern University, Boston, Mass. “Ken tried a couple of things. We gave him some additional ideas. As a result, he rotated the samples in such a way that it should throw the heavier fluid to the outside and the lighter bubbles to the inside. It’s going to make a huge difference in the results. We expect to get larger crystals and fewer malformed crystals. It was great interchange between scientists on the ground and the crew in space.”

The ZCG experiment was aided by the new Active Rack Isolation System (ARIS) that damps out vibrations created by crew movement, operating equipment and other activities on the Station. The Station science team reported that ARIS is successfully lowering the vibration levels in EXPRESS Rack 2.

Also Monday, Expedition Six Science Officer Don Pettit removed a rear panel on the ARCTIC 1 freezer, which malfunctioned during Expedition Five. ARCTIC is designed to store biological samples after processing. Pettit did a series of electrical tests, which were unable to restore the freezer to full operations. The operations team is now evaluating plans to return the freezer to Earth for repairs. The problem does not affect science operations, and no samples were stored in the freezer.

On Tuesday, the crew installed pivot pin fittings and a heater jumper cable in the Destiny lab rack location where the Window Observational Research Facility (WORF) will be installed on the ULF-1 mission. ULF-1, which is the start of Expedition Seven, will mark the beginning of WORF’s planned Earth observations research.

On Wednesday, Bowersox performed some calibration tests on the new Foot/Ground Reaction Forces During Space Flight (FOOT) experiment prior to the start of science operations. FOOT is designed to characterize the stress on the lower extremity bones and muscles in microgravity.

Among the Crew Earth Observation (CEO) photography subjects for this week were Lake Victoria in East Africa, which supplies fish for the surrounding population, the beginning of fire season in West Africa, coral formations around Tuamotu-Austral Islands, Baker Island and Howland Island in the Central Pacific, and the urban area of Chicago, Ill.

The crew during the week also continued to perform daily status and maintenance checks on Station science payloads and equipment.

The Payload Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Ala., manages all science research experiment operations aboard the International

Space Station. The center is also home for coordination of the mission-planning work of a variety of international sources, all science payload deliveries and retrieval, and payload training and payload safety programs for the Station crew and all ground personnel.

Steve Roy | EurekAlert!
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/photos/2002/photos02-320.html

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>