Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Station crew, scientists fine-tune zeolite experiment

20.12.2002


The Zeolite Crystal Growth (ZCG) experiment got off to a successful start this week aboard the International Space Station.


Expedition Six Commander Ken Bowersox uses a portable plastic enclosure called the Maintenance Work Area on Dec. 16, 2002, to prepare Zeolite Crystal Growth sample tubes for processing. Hard as a rock, yet able to absorb liquids and gases like a sponge, zeolites form the backbone of the chemical processes industry on Earth. By using the International Space Station’s microgravity environment to grow larger, better quality crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes. (Credit: NASA/JSC)



Hard as a rock, yet able to absorb liquids and gases like a sponge, zeolites form the backbone of the chemical processes industry. Virtually all the world’s gasoline is produced or upgraded using zeolites. Improving zeolites could make gasoline production more efficient or lead to ways of storing clean-burning hydrogen for fuel. Zeolites can also be applied to detergents, optical cables, gas and vapor detectors for environmental monitoring.

The microgravity environment of the Space Station allows scientists to grow higher-quality crystals that are 100 to 500 times larger than normal for analysis and test the crystallization process in “slow motion” without being rushed by the effects of gravity.


On Monday, Expedition Six Commander Ken Bowersox used a Space Station drill to mix 12 zeolite samples in clear tubes to evaluate how much to mix the actual test samples the next day. Scientists on the ground watching on TV noticed bubbles in the samples, which could cause smaller crystals and worked together with Bowersox to develop some changes in the mixing process.

On Tuesday, Bowersox used the modified mixing procedure to process 15 of the 19 autoclaves to isolate the bubbles believed to be in the samples. He then re-inserted the samples in the ZCG furnace in EXPRESS Rack 2 in the Station’s Destiny Laboratory. The experiment then began a heat-up and cool-down cycle that will last just over 15 days.

“The exciting thing is we are using the crew to make intelligent decisions,” said Dr. Al Sacco, Jr., principal investigator for the experiment. “It has already helped in the sense we’ve seen more bubbles in these solutions than we anticipated. These bubbles could cause larger numbers of smaller, deformed crystals to grow.”

“In real time, we changed some of our procedures, said Sacco, director of the Center for Advanced Microgravity Materials Processing (CAMMP) at Northeastern University, Boston, Mass. “Ken tried a couple of things. We gave him some additional ideas. As a result, he rotated the samples in such a way that it should throw the heavier fluid to the outside and the lighter bubbles to the inside. It’s going to make a huge difference in the results. We expect to get larger crystals and fewer malformed crystals. It was great interchange between scientists on the ground and the crew in space.”

The ZCG experiment was aided by the new Active Rack Isolation System (ARIS) that damps out vibrations created by crew movement, operating equipment and other activities on the Station. The Station science team reported that ARIS is successfully lowering the vibration levels in EXPRESS Rack 2.

Also Monday, Expedition Six Science Officer Don Pettit removed a rear panel on the ARCTIC 1 freezer, which malfunctioned during Expedition Five. ARCTIC is designed to store biological samples after processing. Pettit did a series of electrical tests, which were unable to restore the freezer to full operations. The operations team is now evaluating plans to return the freezer to Earth for repairs. The problem does not affect science operations, and no samples were stored in the freezer.

On Tuesday, the crew installed pivot pin fittings and a heater jumper cable in the Destiny lab rack location where the Window Observational Research Facility (WORF) will be installed on the ULF-1 mission. ULF-1, which is the start of Expedition Seven, will mark the beginning of WORF’s planned Earth observations research.

On Wednesday, Bowersox performed some calibration tests on the new Foot/Ground Reaction Forces During Space Flight (FOOT) experiment prior to the start of science operations. FOOT is designed to characterize the stress on the lower extremity bones and muscles in microgravity.

Among the Crew Earth Observation (CEO) photography subjects for this week were Lake Victoria in East Africa, which supplies fish for the surrounding population, the beginning of fire season in West Africa, coral formations around Tuamotu-Austral Islands, Baker Island and Howland Island in the Central Pacific, and the urban area of Chicago, Ill.

The crew during the week also continued to perform daily status and maintenance checks on Station science payloads and equipment.

The Payload Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Ala., manages all science research experiment operations aboard the International

Space Station. The center is also home for coordination of the mission-planning work of a variety of international sources, all science payload deliveries and retrieval, and payload training and payload safety programs for the Station crew and all ground personnel.

Steve Roy | EurekAlert!
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/photos/2002/photos02-320.html

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>