Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon transistors will encounter pressure from nanoelectronics

19.11.2002


The future of nanoelectronics looks promising. Built with nanotubes and various self-assembling molecular structures, this technology may revolutionize the electronic world by replacing the silicon transistor in approximately ten years.



Chemically synthesized nano building blocks are expected to replace semiconductor logic and memory devices and target niche applications over the next decade.

"In 20 to 50 years, we will likely see wide-ranging use of self-assembly," says Technical Insights Director of Research Leo O’Connor.


Extreme ultraviolet (EUV) lithography is currently favored by chipmakers, and some companies are expected to use EUV to replace 157 nm scanners in the second half of the decade. Japanese electronic companies have joined forces to develop low-energy electron-beam proximity projection lithography.

Currently, chipmakers are working to make the 157 nm lithography technology operational by 2003. In doing so, they have come up against many obstacles such as the availability of calcium fluoride for lens manufacturing and contamination of optical elements.

Researchers are working to address these difficulties. Recently, supporters of various forms of next-generation lithography reported progress on 157 nm optical, projection e-beam lithography and EUV lithography. Although expensive, EUV scanners will work at the 13.5 nm wavelength and take manufacturers over several process generations.

Although chip technology plays a crucial role in the semiconductor industry, researchers believe that it is only a matter of time before the switch from lithographed silicon chips to self-assembled nanoelectronics takes place.

In anticipation of the eventual change, researchers at various universities are experimenting with different technologies. At Delft University in the Netherlands, for example, researchers have built basic logic circuits with carbon nanotubes, while at Harvard University a group of researchers used indium phosphide nanowires to build the same types of devices.

Molecular self-assembly is not without its share of problems. Despite challenges, it seems clear that nanotechnology will have a profound impact on the future development of many sectors, particularly that of electronics, which demands technologies that enable faster processing of data at lower costs.


New analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), featured in its Nanotech Alert subscription service, discusses pioneering research being undertaken for the development of this emerging technology.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis and consulting business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of nanoelectronic technologies is covered in Nanotech Alert, a Technical Insights subscription service, and in Nanodevices, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.

Nanotech Alert

Contact:
USA:
Julia Rowell
P: 210.247.3870
F: 210.348.1003
E: jrowell@frost.com

APAC:
Pramila Gurtoo
DID : (603) 6204 5811
Gen : (603) 6204 5800
Fax : (603) 6201 7402
E: pgurtoo@frost.com

Julia Rowell | EurekAlert!
Further information:
http://www.frost.com
http://www.Technical-Insights.frost.com

More articles from Power and Electrical Engineering:

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>