Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silicon transistors will encounter pressure from nanoelectronics


The future of nanoelectronics looks promising. Built with nanotubes and various self-assembling molecular structures, this technology may revolutionize the electronic world by replacing the silicon transistor in approximately ten years.

Chemically synthesized nano building blocks are expected to replace semiconductor logic and memory devices and target niche applications over the next decade.

"In 20 to 50 years, we will likely see wide-ranging use of self-assembly," says Technical Insights Director of Research Leo O’Connor.

Extreme ultraviolet (EUV) lithography is currently favored by chipmakers, and some companies are expected to use EUV to replace 157 nm scanners in the second half of the decade. Japanese electronic companies have joined forces to develop low-energy electron-beam proximity projection lithography.

Currently, chipmakers are working to make the 157 nm lithography technology operational by 2003. In doing so, they have come up against many obstacles such as the availability of calcium fluoride for lens manufacturing and contamination of optical elements.

Researchers are working to address these difficulties. Recently, supporters of various forms of next-generation lithography reported progress on 157 nm optical, projection e-beam lithography and EUV lithography. Although expensive, EUV scanners will work at the 13.5 nm wavelength and take manufacturers over several process generations.

Although chip technology plays a crucial role in the semiconductor industry, researchers believe that it is only a matter of time before the switch from lithographed silicon chips to self-assembled nanoelectronics takes place.

In anticipation of the eventual change, researchers at various universities are experimenting with different technologies. At Delft University in the Netherlands, for example, researchers have built basic logic circuits with carbon nanotubes, while at Harvard University a group of researchers used indium phosphide nanowires to build the same types of devices.

Molecular self-assembly is not without its share of problems. Despite challenges, it seems clear that nanotechnology will have a profound impact on the future development of many sectors, particularly that of electronics, which demands technologies that enable faster processing of data at lower costs.

New analysis by Technical Insights, a business unit of Frost & Sullivan (, featured in its Nanotech Alert subscription service, discusses pioneering research being undertaken for the development of this emerging technology.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis and consulting business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of nanoelectronic technologies is covered in Nanotech Alert, a Technical Insights subscription service, and in Nanodevices, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.

Nanotech Alert

Julia Rowell
P: 210.247.3870
F: 210.348.1003

Pramila Gurtoo
DID : (603) 6204 5811
Gen : (603) 6204 5800
Fax : (603) 6201 7402

Julia Rowell | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>