Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alberta Research Council reaches major milestone in the development of micro fuel cell technology


A first in Canada, the Alberta Research Council (ARC) reached a milestone in the technical development of its own version of solid oxide fuel cell (SOFC) technology. ARC scientists are developing a proprietary micro solid oxide fuel cell (µ-SOFC) source of energy for small-scale portable applications such as laptops or personal digital assistants (PDAs).

"This is an important milestone as we pursue our strategic initiative in fuel cell technologies," says John Zhou, manager, Advanced Materials business unit. "Alternative energy technologies are becoming increasingly important in today’s world and we need to research options that have practical applications."

Research scientists in ARC’s Advanced Materials business unit have constructed a working demonstration unit able to power a small electric fan. The single cell consists of a small hollow ceramic tube that is two millimetres in diameter and two centimetres in active length. ARC’s fuel cell demo unit uses hydrogen gas as a fuel, but could be adapted to run on a variety of fuels including natural gas, butane or propane. This "flexible fuel" application of fuel cell technology is considered to be more environmentally friendly due to lower emissions of CO2, a known contributor to greenhouse gases.

"We’re still in the early stages of research and development, but our focus is on developing an energy source that is easy to start up and will provide a high degree of power in a relatively small space, such as a cell phone, laptop or PDA," says Partho Sarkar, senior research scientist, ARC. "Solid oxide fuel cells have one of the highest conversion efficiencies of all fuel cells (35-60 per cent), so they make excellent candidates for this type of applied research."

The project began more than 18 months ago and involves five scientific research employees and one commercial analyst. ARC has invested more than $700,000 in the project to date. Five patent applications have been filed by ARC, which has funded the project 100 per cent.

Alberta Research Council Inc. (ARC) develops and commercializes technologies to give clients a competitive advantage. A Canadian leader in innovation, ARC provides solutions globally to the energy, life sciences, agriculture, environment, forestry and manufacturing sectors. ARC’s Advanced Material business unit develops and commercializes new materials, products, and processing technologies in ceramics, metals, polymers and composites.

For technical information, contact:

Partho Sarkar
Research Scientist
Alberta Research Council Inc.
Tel: (780) 450-5272

For commercial information, contact:

Dean Richardson, P.Eng., CPIM
Venture Manager
Alberta Research Council Inc.
Tel: (780) 450-5334

For corporate information or to arrange for video or photos of the demo unit, contact:

Bernie Poitras
Corporate Relations
Alberta Research Council Inc.
Tel: (780) 450-5145

Bernie Poitras | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>