Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reactor research could save money on nuclear waste handling

08.11.2002


NEW REACTOR: Sandia researcher Gary Harms conducts experiments with a new Sandia-built reactor that are paving the way toward possible changes in regulations on transport and storage of nuclear waste. (Photo by Randy Montoya)


Recent experiments by Sandia National Laboratories researcher Gary Harms and his team are using a new Labs-built reactor to provide benchmarks showing that spent nuclear fuel — uranium that has been used as fuel at a nuclear power plant — is considerably less reactive than the original fresh fuel. This could mean significant savings in the eventual safe transport, storage, and disposal of nuclear waste.

“The conservative view has always been to treat spent fuel like it just came out of the factory with its full reactivity,” Harms, project lead, says. “This results in the numbers of canisters required in the handling of spent nuclear fuel to be conservatively high, driving up shipping and storage costs.”

The more realistic view is that as nuclear fuel is burned, the reactivity of the fuel decreases due to the consumption of some of the uranium and to the accumulation of fission products, the “ash” left from burning the nuclear fuel. Accounting for this reactivity decrease, called burnup credit, would allow for the spent nuclear fuel to be safely packed in more dense arrays for transportation, storage, and disposal than would be possible if the composition changes were ignored.



“Allowing such burnup credit would result in significant cost savings in the handling of spent nuclear fuel,” Harms adds.

This seems obvious on the surface, but in the ultraconservative world of nuclear criticality safety, an effect must be proven before it is accepted. Thus, prior to the Nuclear Regulatory Commission ever agreeing to the more realistic view, it would have to be proven in actual experiments and compared to computer models showing the same effects.

In 1999 Harms obtained a three-year grant from the Department of Energy’s (DOE) Nuclear Energy Research Initiative to make benchmark measurements of the reactivity effects that fission products have on a nuclear reactor. The project was called the Burnup Credit Critical Experiment (BUCCX). Rhodium, an important fission product absorber, was chosen for the first measurements.

To do this the BUCCX team first designed and built a small reactor, technically called a critical assembly, which uses low-enriched fuel. The control system and some of the assembly hardware for the reactor came from the 1980s-era Space Nuclear Thermal Propulsion (SNTP) Critical Experiment project, designed to simulate the behavior of a nuclear rocket reactor.

The reactor, which operated during the experiments at a lower power than a household light bulb, was subjected to several layers of safety reviews. During the experiments, it performed safely exactly as predicted.

“It took us most of the three years to build the reactor and get authorization to use it. Only in the last few months have we begun actual experiments,” Harms says. “Much of the time was involved in getting approvals from Sandia and DOE and to make sure it meets all ES&H concerns.”

The core of the BUCCX consists of a few hundred rods full of pellets of clean uranium that originally came from the nuclear powered ship NS Savannah. Thirty-six of the rods can be opened to insert experiment materials between the fuel pellets. Prior to conducting experiments with the rhodium, the researchers loaded the reactor to critical with only the uranium fuel. This provided a baseline point of where uranium goes critical — information that could be compared to later experiments.

Then, the BUCCX team added about 1,200 circular rhodium foils between the uranium pellets in the 36 rods. The intent was to measure the extent to which the rhodium reduced the reactivity of the uranium.

“We then compared the critical loading of the assembly with the rhodium foils to the critical loading without rhodium,” Harms says.

And, not to anyone’s surprise, it took significantly more fuel to reach critical with the rhodium-doped rods than without them.

Months before running the physical experiments on the reactor, Harms was modeling on Sandia’s sophisticated computers to determine where the uranium doped with rhodium would go critical.

“I was curious,” Harms says, “I did calculations ahead of time so I could lay out the experiment and get a peek at what the experiments would say. In the end, I was fairly impressed with how accurate the calculations were compared to the actual physical experiments.”

Of course, the computer codes weren’t perfect, and had a small bias when compared to other criticality safety benchmarks. And in analyzing the actual experiments in the reactor, Harms took that bias into account.

Harms says two other fission products absorb neutrons better than rhodium. However, he selected rhodium to run the experiments because it is one of the few byproducts of fission that has a single stable isotope, which means the experiment would not be contaminated by the effects of other isotopes. Also, no one else has done any experiments with rhodium in a critical assembly. Subsequent experiments could address the dozen or so other fission products that are important to burnup credit.

Also, to his knowledge, no other lab in the US is doing actual burnup credit experiments. Oak Ridge National Laboratory is running codes to determine how much the reactivity of spent fuel is reduced by fission products, but not doing actual experiments.

At the end of the three-year funding period, Harms says the Sandia program has come a long way in proving that the reactivity of spent fuel is considerably less than that of fresh fuel.

“In essence Sandia is helping pave the way for the Nuclear Regulatory Commission to address the safe and cost-efficient transport and storage of nuclear waste,” Harms says.

Chris Burroughs | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>