Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reactor research could save money on nuclear waste handling

08.11.2002


NEW REACTOR: Sandia researcher Gary Harms conducts experiments with a new Sandia-built reactor that are paving the way toward possible changes in regulations on transport and storage of nuclear waste. (Photo by Randy Montoya)


Recent experiments by Sandia National Laboratories researcher Gary Harms and his team are using a new Labs-built reactor to provide benchmarks showing that spent nuclear fuel — uranium that has been used as fuel at a nuclear power plant — is considerably less reactive than the original fresh fuel. This could mean significant savings in the eventual safe transport, storage, and disposal of nuclear waste.

“The conservative view has always been to treat spent fuel like it just came out of the factory with its full reactivity,” Harms, project lead, says. “This results in the numbers of canisters required in the handling of spent nuclear fuel to be conservatively high, driving up shipping and storage costs.”

The more realistic view is that as nuclear fuel is burned, the reactivity of the fuel decreases due to the consumption of some of the uranium and to the accumulation of fission products, the “ash” left from burning the nuclear fuel. Accounting for this reactivity decrease, called burnup credit, would allow for the spent nuclear fuel to be safely packed in more dense arrays for transportation, storage, and disposal than would be possible if the composition changes were ignored.



“Allowing such burnup credit would result in significant cost savings in the handling of spent nuclear fuel,” Harms adds.

This seems obvious on the surface, but in the ultraconservative world of nuclear criticality safety, an effect must be proven before it is accepted. Thus, prior to the Nuclear Regulatory Commission ever agreeing to the more realistic view, it would have to be proven in actual experiments and compared to computer models showing the same effects.

In 1999 Harms obtained a three-year grant from the Department of Energy’s (DOE) Nuclear Energy Research Initiative to make benchmark measurements of the reactivity effects that fission products have on a nuclear reactor. The project was called the Burnup Credit Critical Experiment (BUCCX). Rhodium, an important fission product absorber, was chosen for the first measurements.

To do this the BUCCX team first designed and built a small reactor, technically called a critical assembly, which uses low-enriched fuel. The control system and some of the assembly hardware for the reactor came from the 1980s-era Space Nuclear Thermal Propulsion (SNTP) Critical Experiment project, designed to simulate the behavior of a nuclear rocket reactor.

The reactor, which operated during the experiments at a lower power than a household light bulb, was subjected to several layers of safety reviews. During the experiments, it performed safely exactly as predicted.

“It took us most of the three years to build the reactor and get authorization to use it. Only in the last few months have we begun actual experiments,” Harms says. “Much of the time was involved in getting approvals from Sandia and DOE and to make sure it meets all ES&H concerns.”

The core of the BUCCX consists of a few hundred rods full of pellets of clean uranium that originally came from the nuclear powered ship NS Savannah. Thirty-six of the rods can be opened to insert experiment materials between the fuel pellets. Prior to conducting experiments with the rhodium, the researchers loaded the reactor to critical with only the uranium fuel. This provided a baseline point of where uranium goes critical — information that could be compared to later experiments.

Then, the BUCCX team added about 1,200 circular rhodium foils between the uranium pellets in the 36 rods. The intent was to measure the extent to which the rhodium reduced the reactivity of the uranium.

“We then compared the critical loading of the assembly with the rhodium foils to the critical loading without rhodium,” Harms says.

And, not to anyone’s surprise, it took significantly more fuel to reach critical with the rhodium-doped rods than without them.

Months before running the physical experiments on the reactor, Harms was modeling on Sandia’s sophisticated computers to determine where the uranium doped with rhodium would go critical.

“I was curious,” Harms says, “I did calculations ahead of time so I could lay out the experiment and get a peek at what the experiments would say. In the end, I was fairly impressed with how accurate the calculations were compared to the actual physical experiments.”

Of course, the computer codes weren’t perfect, and had a small bias when compared to other criticality safety benchmarks. And in analyzing the actual experiments in the reactor, Harms took that bias into account.

Harms says two other fission products absorb neutrons better than rhodium. However, he selected rhodium to run the experiments because it is one of the few byproducts of fission that has a single stable isotope, which means the experiment would not be contaminated by the effects of other isotopes. Also, no one else has done any experiments with rhodium in a critical assembly. Subsequent experiments could address the dozen or so other fission products that are important to burnup credit.

Also, to his knowledge, no other lab in the US is doing actual burnup credit experiments. Oak Ridge National Laboratory is running codes to determine how much the reactivity of spent fuel is reduced by fission products, but not doing actual experiments.

At the end of the three-year funding period, Harms says the Sandia program has come a long way in proving that the reactivity of spent fuel is considerably less than that of fresh fuel.

“In essence Sandia is helping pave the way for the Nuclear Regulatory Commission to address the safe and cost-efficient transport and storage of nuclear waste,” Harms says.

Chris Burroughs | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>