Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voice-command wheelchair developed at Coimbra University

30.10.2002


A wheelchair robot developed by scientists at Coimbra University already has a prototype “capable of navigating without colliding with obstacles by commanded human voice”, as professor Urbano Nunes states, the person with joint responsibility, with professor Gabriel Pires, for the team of professors and students of the Electro-technical Engineering Department responsible for the project.

For the last five years this project has been developed and integrated in degree classes and post-graduate courses of this department of the oldest Portuguese university, the “gradual objective” research project was created to facilitate the lives of the dependent elderly and those with major motor skills deficiencies.

Various practical demonstrations have already been done with the wheelchair for interested parties and the media, but at present the project is undergoing some modifications.



Although only a prototype at the development stage and with improvements in the very near future, the Robchair can actually already be sold – of great use for people who have difficulty with their movement: simple voice commands, like “forward”, “backwards”, “to the right” and “to the left” can give great autonomy to the elderly, the infra-red sensors allow mobility without accidents, with no collisions with obstacles, narrow passages or doors.

But the prototype, which uses a common wheelchair moved by electricity, is not only going to be limited by voice commands: the idea is to expand its autonomy giving it the power of decision based on its environment through a controller that uses fuzzy-logic. Communicating with “intelligent” buildings like hospitals, therapy units or centres for the elderly, the chair can get around according to pre-established programme of routes

“We are redoing the control architecture (electronic and communications), to be able to test more developed capabilities: better symbiosis with human beings, greater capacity of autonomous navigation from A to B in indoor environments (from one room to another, for example). We also intend to incorporate autonomous/semi-autonomous navigation capacity in outdoor environments”, Urbano Nunes outlines.

In a scientific article recently published in an international robotic magazine by Gabriel Pires and Urbano Nunes, the last results obtained by the research scientists are described with regard to the “Reactive Shared-Control” system. It is this that makes the semi-autonomous navigation of the wheelchair possible in unknown and dynamic environments.

The objective of the above-mentioned reactive system is to give assistance to wheelchair users, making navigation easier and safer. Little used in traditional information systems, fuzzy logic is however widely used in information networks where speed of decision is fundamental. One of the best-known examples is the system that runs the Tokyo underground. In the case of Robchair, the fuzzy logic helps the taking of decisions based on behaviour and environment.

According to the article, three types of behaviour were implemented: avoiding obstacles intelligently, detection of collision and the capacity of going round or around obstacles.

In this way, the user of the chair and the actual vehicle share movement commands, facilitating the progression of taking some of the weight of responsibility for making decisions each time.

Urbano Nunes | alfa
Further information:
http://www.isr.uc.pt
http://www.isr.uc.pt/~urbano/Robchair.htm

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>