Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Voice-command wheelchair developed at Coimbra University


A wheelchair robot developed by scientists at Coimbra University already has a prototype “capable of navigating without colliding with obstacles by commanded human voice”, as professor Urbano Nunes states, the person with joint responsibility, with professor Gabriel Pires, for the team of professors and students of the Electro-technical Engineering Department responsible for the project.

For the last five years this project has been developed and integrated in degree classes and post-graduate courses of this department of the oldest Portuguese university, the “gradual objective” research project was created to facilitate the lives of the dependent elderly and those with major motor skills deficiencies.

Various practical demonstrations have already been done with the wheelchair for interested parties and the media, but at present the project is undergoing some modifications.

Although only a prototype at the development stage and with improvements in the very near future, the Robchair can actually already be sold – of great use for people who have difficulty with their movement: simple voice commands, like “forward”, “backwards”, “to the right” and “to the left” can give great autonomy to the elderly, the infra-red sensors allow mobility without accidents, with no collisions with obstacles, narrow passages or doors.

But the prototype, which uses a common wheelchair moved by electricity, is not only going to be limited by voice commands: the idea is to expand its autonomy giving it the power of decision based on its environment through a controller that uses fuzzy-logic. Communicating with “intelligent” buildings like hospitals, therapy units or centres for the elderly, the chair can get around according to pre-established programme of routes

“We are redoing the control architecture (electronic and communications), to be able to test more developed capabilities: better symbiosis with human beings, greater capacity of autonomous navigation from A to B in indoor environments (from one room to another, for example). We also intend to incorporate autonomous/semi-autonomous navigation capacity in outdoor environments”, Urbano Nunes outlines.

In a scientific article recently published in an international robotic magazine by Gabriel Pires and Urbano Nunes, the last results obtained by the research scientists are described with regard to the “Reactive Shared-Control” system. It is this that makes the semi-autonomous navigation of the wheelchair possible in unknown and dynamic environments.

The objective of the above-mentioned reactive system is to give assistance to wheelchair users, making navigation easier and safer. Little used in traditional information systems, fuzzy logic is however widely used in information networks where speed of decision is fundamental. One of the best-known examples is the system that runs the Tokyo underground. In the case of Robchair, the fuzzy logic helps the taking of decisions based on behaviour and environment.

According to the article, three types of behaviour were implemented: avoiding obstacles intelligently, detection of collision and the capacity of going round or around obstacles.

In this way, the user of the chair and the actual vehicle share movement commands, facilitating the progression of taking some of the weight of responsibility for making decisions each time.

Urbano Nunes | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>