Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tokamak fusion test reactor removal successfully completed

21.10.2002


One of the world’s largest and most successful experimental fusion machines has been safely disassembled and cleared away. In September, staff at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) completed the dismantling and removal of the Tokamak Fusion Test Reactor (TFTR), which shut down in 1997 following 15 years of operation. During its experimental life, TFTR set records for fusion performance and made major contributions to the development of fusion as a long-term energy alternative. The PPPL team finished the removal of TFTR on schedule and under budget.



"This marks the end of an important chapter in the history of fusion," said Raymond L. Orbach, Director of the Office of Science, which oversees PPPL for the U.S. Department of Energy. "The Tokamak Fusion Test Reactor achieved many firsts that brought us closer to an era of fusion power. Now that the decommissioning of TFTR has been completed safely, on schedule and under budget, in keeping with Office of Science best practices, we look forward to continued contributions in fusion power research from PPPL."

PPPL Director Robert J. Goldston noted, "The unprecedented scientific success of TFTR experiments has now been followed by its safe dismantling and removal. Not only did TFTR greatly advance fusion science, but its safe, cost-effective, and efficient decommissioning also demonstrates the promise of fusion as an environmentally attractive, economical energy source."


TFTR was the world’s first magnetic fusion device to perform extensive scientific experiments with plasmas composed of 50/50 deuterium/tritium (D-T), the fuel mix required for practical fusion power production, and also the first to produce more than 10 million watts of fusion power. In 1995, TFTR attained a world-record temperature of 510 million degrees centigrade - more than 25 times that at the center of the sun.

Since the completion of D-T experiments on TFTR in 1997, PPPL has focused on nurturing the best new ideas in fusion research, both in advanced tokamaks and in innovative confinement configurations. Two major experimental projects, along with increased theory and computation, will anchor this program. The first, the National Spherical Torus Experiment (NSTX), is already producing an increased understanding of fusion physics. The second, the National Compact Stellarator Experiment (NCSX), now being designed, will provide further insight into the capabilities of stellarators, particularly for stable, continuous operation.

Work on the removal of TFTR began in October of 1999. The experiment stood 24-feet tall with a diameter of 38 feet. It contained an 80-ton doughnut-shaped vacuum chamber, 587 tons of magnetic field coils, a 15-ton titanium center column, and a massive stainless-steel support structure. TFTR’s use of a fuel mixture containing tritium, a mildly radioactive form of hydrogen, added to the challenge of its safe and environmentally sound removal.

The most challenging aspect of the TFTR disassembly was the segmentation of the 100-cubic-yard vacuum vessel. Use of conventional technologies such as abrasive sawing and flame cutting could not satisfy health and safety concerns. PPPL’s engineering team effectively addressed all challenges by developing an innovative system - Diamond Wire Cutting used in conjunction with a concrete filling technique - which reduced worker radiation exposure, airborne emissions, and waste generation. PPPL’s unique and innovative application of Diamond Wire Cutting earned the Laboratory the New Jersey Society of Professional Engineers’ 2002 Outstanding Engineering Achievement Award.

In the fusion process, matter is converted to energy when the nuclei of light elements, such as hydrogen, join or fuse to form heavier elements. In experiments such as TFTR, physicists employ magnetic fields to confine hot, ionized gases called plasmas, which fuel the fusion reactions. Compared to fossil fuels and fission, now used in commercial power plants, fusion would have distinct advantages, including an inexhaustible fuel supply; no chemical combustion products; and inherent safety, with minimal production of waste.


PPPL, funded by the U.S. Department of Energy and managed by Princeton University, is a collaborative national center for science and innovation leading to an attractive fusion energy source. The Laboratory is on Princeton’s James Forrestal Campus, off U.S. Route 1 in Plainsboro, NJ.

Anthony R. DeMeo | EurekAlert!
Further information:
http://www.pppl.gov/

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs

18.08.2017 | Life Sciences

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>