Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An ’AAAAAAAAA’ battery? UF researchers make progress on tiny cell

10.10.2002


It would send and receive faxes and video and have the processing power of a personal computer. The cell phone of the future would be on the market today but for one hitch: the battery.



The technology is available to build cell phones that would make the latest versions -- those that allow users to send pictures and play video games -- seem almost primitive. But the batteries now used in cell phones are not nearly powerful enough to drive all the fancy add-ons, said Charles Martin, a University of Florida chemistry professor. Laptop computers, video cameras and digital cameras also are hobbled by today’s power storage technology. Meanwhile, tiny machines being developed for a variety of purposes -- such as "lab-on-a-chip" devices that sense airborne chemical or biological pathogens -- will require batteries many times smaller and more powerful than today’s smallest batteries.

So Martin and his team are making progress on a new approach: Batteries inspired by the emerging field of nanotechnology. The research could both improve the small batteries used in portable electronics and lead to truly miniscule power packs for so called "microelectromechanical" machines, or MEMS, devices. In the first year of a five-year collaborative effort with three other institutions funded by a $5 million grant from the U.S. Office of Naval Research, the research is showing progress toward its goal of creating a three-dimensional, millimeter-sized battery – considerably smaller than the centimeter-sized hearing aid batteries that are the smallest batteries on the market today.


All batteries consist of two electrodes, an anode and a cathode, and an electrolyte solution. UF researchers have created both nano-anodes and nano-cathodes, or anodes and cathodes measured on the scale of billionths of a meter. They’ve shown in tests that these electrodes are as much as 100 times more powerful than traditional ones.

The electrodes also have a unique and promising structure.

"The UF progress is very significant," said Bruce Dunn, a professor of materials science and engineering at the University of California-Los Angeles, the lead institution in the project. "(Martin’s) work, the fabrication and testing of nano-dimensional cathodes and anodes, represents the key elements of his concentric tube battery approach, which represents a novel three-dimensional configuration."

Martin and his colleagues create the nano-electrodes using a technique he pioneered called template synthesis. This involves filling millions of tiny "nanoscopic" holes in a centimeter-sized plastic or ceramic template with a solution that contains the chemical components that make up the electrode. After the solution hardens, the researchers remove the template, leaving only the electrodes. The next challenge is to find a way to put together the nano-anode and nano-cathode with a nano-electrolyte and other components.

"We’ve proposed a totally new design for a battery where all the components are nanomaterials, and we have succeeded in making nearly all of these components," Martin said. "We have not yet developed the technologies to assemble these components, and that’s what we’re working on."

Robbie Sides, a UF doctoral student in chemistry and one of the researchers in Martin’s lab, said UF’s nano-anodes and nano-cathodes are not only more powerful than traditional ones, they’re also hardier. Lithium-ion battery electrodes might sustain an average of 500 charges and discharges before wearing out, he said. In tests done by another UF chemistry doctoral student on Martin’s team, the nano-electrodes sustained as many as 1,400 charges.

The new technology could improve cell phones and other portable electronics, which use lithium-ion batteries. These batteries are made of composites of small particles. Their ability to produce power depends on lithium ions diffusing throughout these particles. While microscopic, the particles are large enough to be measured in microns, or millionths of a meter. The nano-battery approach seeks to replace these particles with particles measured in billionths of a meter, which would enhance power storage and production because the lithium ions would have less distance to travel as they diffuse.

Micro-batteries also could power tiny pumps or presses in MEMS devices. Researchers already have developed or are working on a plethora of uses for such machines, including tiny switches or environmental sensors. As Sides pointed out, however, it doesn’t make much sense to make the device tiny unless there is a power source to match.

"If you have a circuit the size of a pinhead and you need a battery the size of a triple A that you get from the store, then it (the circuit) won’t be useful," he said.


The U.S. Department of Energy has funded much of the UF basic science research on nanobatteries. Aside from UF and UCLA, the other participants in the Office of Naval Research project are the University of Utah and the Naval Research Laboratory. Each institution is working on a different approach to creating batteries made of nanoscale materials, efforts Martin predicts could result in a prototype device within three years

Aaron Hoover | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>