Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circuit transfers four times more power out of shakes and rattle

24.09.2002


Penn State engineers have optimized an energy harvesting circuit so that it transfers four times more electrical power out of vibration – the ordinary shakes and rattles generated by human motion or machine operation.



Using their laboratory prototype, which was developed from off-the-shelf parts, the Penn State researchers can generate 50 milliwatts. Although they haven’t tried it, they believe the motion of a runner could be harnessed to generate enough power to run a portable electronic music device. By comparison, simple, un-optimized energy harvesting circuits, for example the type used to power LEDs on "smart" skis, can only generate a few milliwatts.

The researchers say the new circuit offers an environmentally friendly alternative to disposable batteries for wearable electronic devices or for wireless communication systems. In addition, the circuit could be used in sensor and monitoring networks that manage environmental control in office buildings, robot control and guidance systems for automatic manufacturing, warehouse inventory; integrated patient monitoring, diagnostics, drug administration in hospitals, interactive toys, smart home security systems, and interactive museums.


The new circuit is described in a paper, "Adaptive Piezoelectric Energy Harvesting Circuit for Wireless, Remote Power Supply," published in the September issue of the journal, IEEE Transactions on Power Electronics. The authors are Geffrey K. Ottman, former Penn State master’s degree student; Dr. Heath Hofmann, assistant professor of electrical engineering; Archin C. Bhatt, former Penn State master’s degree student; and Dr. George A. Lesieutre, professor of aerospace engineering and associate director of the Penn State Center for Acoustics and Vibration.

Lesieutre explains that, like other energy harvesting circuits, the new Penn State device depends on the fact that when vibrated so that they bend or flex, piezo-electric materials produce an alternating or AC current and voltage. This electrical power has to be converted to direct current or DC by a rectifier before it can be stored in a battery or used. Hofmann adds that the magnitude of the piezoelectric material’s vibration determines the magnitude of the voltage: "Since, in operation, the amount of vibrations can vary widely, some way must also be found to adaptively maximize power flow as well as convert it from AC to DC."

Using an analytical model, the team derived the theoretical optimal power flow from a rectified piezoelectric device and proposed a circuit that could achieve this power flow. The circuit includes an AC-DC rectifier and a switch-mode DC-DC converter to control the energy flow into the battery.

The Penn State researcher notes that using an approach similar to one used to maximize power from solar cells, the team developed a tracking feature that enables the DC-DC converter to continuously implement the optimal power transfer and optimize the power stored by the battery.

The circuit is the first to include an adaptive DC-DC converter and achieves about 80 percent of the theoretical maximum – well above the operating output of simple energy harvesting circuits.


The research was supported by a contract with the Office of Naval Research

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>