Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

150-ton magnet pulls world toward new energy source

24.09.2002


MIT team is part of project

A 150-ton magnet developed in part by MIT engineers is pulling the world closer to nuclear fusion as a potential source of energy.

Over the last three years "we’ve shown that we can design a magnet of this size and complexity and make it work," said Joseph V. Minervini, a senior research engineer at MIT’s Plasma Science and Fusion Center (PSFC) and Department of Nuclear Engineering. Minervini leads the MIT team involved in the project.



He notes, however, that a better understanding of certain results is necessary to reduce costs for the researchers’ ultimate goal: a magnet weighing 925 tons that will be key to the International Thermonuclear Experimental Reactor (ITER). That magnet, in turn, will be part of a total magnet system weighing some 10,000 tons.

ITER goals include demonstrating the feasibility of nuclear fusion as an energy source, which Congress has recently shown increased interest in. Last week a Department of Energy panel recommended that the United States re-join the multi-nation ITER collaboration. In 1999 Congress appropriated funding for completion of R&D commitments toward ITER, but not for an extension of US participation in the project.

In nuclear fusion, light elements are fused together at enormous pressures to make heavier elements, a process that releases large amounts of energy. Powerful magnets provide the magnetic fields needed to initiate, sustain, and control the plasma, or electrically charged gas, in which fusion occurs.

The 150-ton magnet in Japan is a testbed for the 925-ton magnet that will ultimately initiate and heat the ITER plasma. Two additional mammoth magnet systems will confine the plasma and control its shape. A model for one of these is currently being tested in Germany; a model of the second is planned.

WEIGHTY TESTBED

The cylindrical 150-ton magnet has three principal parts: an outer module built by a Japanese team, an inner module built by a US team, and a thin "insert" coil near the core that is fitted with instrumentation to "tell what’s going on," Minervini said. Three different inserts have been separately tested; two of these were built by Japan, the other by Russia.

Three sets of tests on the magnet since 2000 have taught the engineers more about magnet performance on such a grand scale. The first test in 2000 showed that the inner and outer modules did indeed work (see MIT Tech Talk May 3, 2000).

Later in the same run the researchers tested one of the Japanese inserts. The overall device produced a magnetic field of 13 tesla (about 260 thousand times more powerful than the Earth’s magnetic field) with a stored energy of 640 megajoules at a current of 46,000 amperes (about 3,000 times the current handled by typical household wiring).

Most importantly, however, the team found that they could successfully operate the magnet in pulses, bringing it to 13 tesla and back down in a few seconds. "The magnet is only doing its job for this particular magnetic fusion application when we’re changing the magnetic field," or ramping it up and down, Minervini explained.

A superconducting magnet operated on a constant current, such as those used in Magnetic Resonance Imaging of the body, suffers no dissipation of electrical energy. That is not true, however, when a superconducting magnet is pulsed. And tests of the new magnet in pulsed operation showed that "initially [the electrical] losses were much higher than predicted," Minervini said.

With repeated operation, however, the magnet appeared to correct itself. "With each cycle the losses lessened until they reached a steady value a lot closer to what we’d predicted," Minervini said.

"We think we understand what’s happening, at least qualitatively," he continued. "It has to do with interactions between the thousands of wires twisted into cables that in turn are coiled to form the magnet. We are essentially changing the electrical characteristics of the cable in a way that decreases losses over time."

CONTROLLING COSTS

The team also explored the magnet’s limits for three key parameters related to maintaining superconductivity: magnetic field, temperature, and current density. "We don’t want to run at the limits of these," Minervini said. "Rather, we want to run within margins that give us some leeway."

The tests, however, showed that these margins are harder to define than expected. "This is a cost issue," Minervini said. "If you know exactly where the margins are, you don’t have to build in as much leeway, which is expensive."

In addition to the first tests in 2000, the team also ran tests in 2001 of a Russian insert and, earlier this year, of a second Japanese insert made of a different kind of superconducting wire.

"We still have a lot of data to analyze for all three test runs," Minervini concluded, "but we’ve shown that the whole thing actually works."

Some 20 MIT PSFC researchers have been involved in the work. Fabrication of the US portion of the magnet was funded by the Department of Energy, primarily through a multi-year grant to MIT. Other US industrial tasks were performed by more than 20 vendors.

Elizabeth Thomson | EuekAlert!

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>