Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system for storing lithium-polymer energy

09.09.2002


The basque technology centre CIDETEC is working on a project about lithium-polymer energy with the collaboration of the companies CEGASA and ZIGOR.



Actually, they are in the first stage of the project. Initially, they analysed the structure, design and development of different electrode materials with multiple characteristics (cathode and anode) to use lithium-polymer in batteries.

The results of the project enabled the development of a lab-scale prototype of a rechargeable graphite-polypirrol battery. The area of that battery is 1,9 x 4,5 cm² and it can provide a energy density of 125 Wh/kg. If we compare those results with the dimensions of commercial lithium-ion batteries that use inorganic oxide of intercalation, the battery made by CIDETEC has slightly lower energy density values. However, if we take into account all the factors that can be modified during the chemical synthesis of polymer conductors, it seems possible to obtain electrodes that may have capacities close to the theoretical ones (450 Ah/kg). That would mean a great improvement of inorganic oxides of intercalation. At the present CIDETEC is trying to replace the liquid electrolyte with a solid electrolyte, which would transform its battery in an organic system.


The followings are the technological innovations that have been obtained until the present:

  • Possibility to remove metallic lithium from secondary lithium batteries, high energy density and high average life (superior than 1000 cycles of loading and unloading)
  • Reduction of weight and dimension, flexibility of design and processing, and all that associated with the use of polymer electrodes based on polymer conductors.
  • Reduction of internal resistance and improvement of chemical stability and electrochemistry of the battery. The latter has been obtained thanks to the higher ionic conductibility of new poly-electrolytes, and that way, apart from extending the average life of the battery, it has been possible to include the modularity concept in the design.

The organic batteries made of the above mentioned characteristics are useful for applications where the weight of the battery is determining, such as in telephones, computers and mobile phones. Nowadays, those appliances are widely sold and it is foreseen an increase in their sales in the last years. Thanks to the organic batteries all those appliances may be easily recycled, eliminating the most toxic components of the present (such as inorganic oxides).

Garazi Andonegi | alfa

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>