Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LECs may be future of flat panel color displays

21.08.2002


In the search for low-cost color displays that do not drain a computer’s battery, the polymer light-emitting electrochemical cell (LEC) may be the next answer to the problem, according to an international team of electrical engineers.

"The color-variable LEC can provide a solution to simple, low cost color displays," Cheng Huang, graduate student in electrical engineering at Penn State told attendees today (Aug. 20) at the 224th American Chemical Society annual meeting in Boston.

Huang, working with Gang Huang, Suzhou University; J. Guo and Chang-Zheng Yang, Nanjing University, and Wei Huang and E.T. Kang, National University of Singapore, investigated color tunable light-emitting devices and the attributes necessary for any organic or polymer electroluminescent device used to provide full-color displays. Devices for flat-panel, full-color displays must have high luminance intensity and efficiency, full-color capability, fast response time and the ability to avoid crosstalk. Also important for these high-performance content displays is the quality of the image on the display, which means high contrast ratio, wide color gamut and long-term stability.



"Achievement of color tunability in light-emitting devices is important for multicolor or full color displays and various approaches for LED development have been tried," says Huang of Penn State. "The dual or multi colored polymer LEC is a new direction for light-emitting devices fabricated from semiconducting electroluminescent polymers.

LECs are made of a blend of polymers including a semiconducting luminescent polymers and a polyelectrolyte, as well as two metallic electrodes. When the proper voltage is applied to the electrodes, a p- n junction forms in place and the luminescent polymer emits light.

Polymer LECs have many advantages for flat-panel, full-color displays. The researchers developed a voltage-controlled, two-color bipolar, fast response LEC based on ionic conductive poly(phenylene vinylene) derivatives. They used a bilayer structure, different luminescent polymers, sandwiched between two electrodes. The change in bias voltage moved the p-n junction from one polymer layer to the other, causing the LEC to emit either red/orange light or yellow/green light. The response time for light emission was well within the requirements of a flat panel display.

Full-color representation relies on the combination of three light colors: red, green and blue. To obtain true full color, the pure red, green and blue must be the exact required wavelengths, and efficient, stable electroluminescent polymer materials must be developed, so that when combined in varying combination, they create all possible colors. While the researchers have not created the proper red or green, and do not have a blue LEC as yet, they have created one cell that can produce both a yellow and a red. They also have created an LEC that responds in less time than the human eye can notice, satisfying the response time requirement.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>