Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LECs may be future of flat panel color displays

21.08.2002


In the search for low-cost color displays that do not drain a computer’s battery, the polymer light-emitting electrochemical cell (LEC) may be the next answer to the problem, according to an international team of electrical engineers.

"The color-variable LEC can provide a solution to simple, low cost color displays," Cheng Huang, graduate student in electrical engineering at Penn State told attendees today (Aug. 20) at the 224th American Chemical Society annual meeting in Boston.

Huang, working with Gang Huang, Suzhou University; J. Guo and Chang-Zheng Yang, Nanjing University, and Wei Huang and E.T. Kang, National University of Singapore, investigated color tunable light-emitting devices and the attributes necessary for any organic or polymer electroluminescent device used to provide full-color displays. Devices for flat-panel, full-color displays must have high luminance intensity and efficiency, full-color capability, fast response time and the ability to avoid crosstalk. Also important for these high-performance content displays is the quality of the image on the display, which means high contrast ratio, wide color gamut and long-term stability.



"Achievement of color tunability in light-emitting devices is important for multicolor or full color displays and various approaches for LED development have been tried," says Huang of Penn State. "The dual or multi colored polymer LEC is a new direction for light-emitting devices fabricated from semiconducting electroluminescent polymers.

LECs are made of a blend of polymers including a semiconducting luminescent polymers and a polyelectrolyte, as well as two metallic electrodes. When the proper voltage is applied to the electrodes, a p- n junction forms in place and the luminescent polymer emits light.

Polymer LECs have many advantages for flat-panel, full-color displays. The researchers developed a voltage-controlled, two-color bipolar, fast response LEC based on ionic conductive poly(phenylene vinylene) derivatives. They used a bilayer structure, different luminescent polymers, sandwiched between two electrodes. The change in bias voltage moved the p-n junction from one polymer layer to the other, causing the LEC to emit either red/orange light or yellow/green light. The response time for light emission was well within the requirements of a flat panel display.

Full-color representation relies on the combination of three light colors: red, green and blue. To obtain true full color, the pure red, green and blue must be the exact required wavelengths, and efficient, stable electroluminescent polymer materials must be developed, so that when combined in varying combination, they create all possible colors. While the researchers have not created the proper red or green, and do not have a blue LEC as yet, they have created one cell that can produce both a yellow and a red. They also have created an LEC that responds in less time than the human eye can notice, satisfying the response time requirement.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>