Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles fall to feasibility of hybrid fuel cell vehicle

20.08.2002


A series of obstacles fell before the onslaught of a Penn State engineering graduate class as they tackled and found solutions to all the barriers preventing development of a hybrid fuel cell automobile using hydrogen fuel cells and battery storage.



"The professors asked the class to solve the problem of hydrogen odorization," says Jamie Weston, graduate student in energy and geoenvironmental engineering. "We quickly came up with a solution and, took the rest of the course to develop our solution and follow the problems as far as we could."

The students -- Mike Sprague, Hui Long, Ramya Venkataraman, Patrick Flynn, Eric Wolfe and Weston -- are all in Penn State’s Energy and Geoenvironmental Engineering program and took the hands-on fuel science class taught by Alan W. Scaroni, head and professor, Andre Boehman, associate professor, and Sarma V. Pisupati, associate professor in the department.


Hydrogen is a colorless and odorless gas. The U.S. government mandates that all flammable gases must, by law, have an odor. The chemicals used to add a smell to the gas, limit the possibility of using the hydrogen in a fuel cell because the chemicals often poison the cells.

"We came up with a simple system that removes the odorant with adsorbers and then tests to ensure that all the odorant is removed before sending the hydrogen to solid storage and fuel cell," says Weston.

Fuel cells convert the chemical potential of hydrogen and oxygen to electrical potential with heat and water without burning the hydrogen. For a fuel cell to work, the hydrogen must be ultra pure.

Another problem in the conceptualization of hybrid fuel cell vehicles is hydrogen storage. While hydrogen is easily stored as a compressed gas, safety concerns swayed the students to use a technically feasible solid storage method. The students chose a metal hydride system based on magnesium.

The hydrogen in the magnesium hydride is stable up to 554 degrees Fahrenheit, but once heated above that temperature, hydrogen gas is released. The five-passenger General Motors Precept electrical vehicle would require the energy from about 23 pounds of hydrogen to travel 500 miles, the researchers told attendees today (Aug. 19) at the 224th American Chemical Society annual meeting in Boston. The students designed their system for this 500-mile limit.

Fuel cells are not the sole energy source in this hybrid automobile. The battery stacks, which may be charged from an outlet in the garage or by the fuel cells are the primary source of power for short trips and in town driving. The batteries will also power the electric heating units that heat up sections of the magnesium hydride, once the battery stack is drained to a certain capacity. Excess energy from the fuel cells will also recharge the batteries.

"Batteries are now being reduced in size, so the weight of the batteries and the hydrogen fuel system will not make the car too heavy," says Weston. "Because most of the hydrogen is stored as a solid, the automobile may be as safe as today’s cars."

The magnesium hydride fuel storage system is not combustible or pyrophoric, so the stored fuel will not burn or explode. Also, at any time in the system, only a small amount of hydrogen is present as a gas, never leaving enough enclosed hydrogen gas to explode. The fuel cell stack is separate from the rest of the system and well vented. In the case of an accident, mechanical sensors would shut off the hydrogen generation.

Andrea Elyse Messer | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>