Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles fall to feasibility of hybrid fuel cell vehicle

20.08.2002


A series of obstacles fell before the onslaught of a Penn State engineering graduate class as they tackled and found solutions to all the barriers preventing development of a hybrid fuel cell automobile using hydrogen fuel cells and battery storage.



"The professors asked the class to solve the problem of hydrogen odorization," says Jamie Weston, graduate student in energy and geoenvironmental engineering. "We quickly came up with a solution and, took the rest of the course to develop our solution and follow the problems as far as we could."

The students -- Mike Sprague, Hui Long, Ramya Venkataraman, Patrick Flynn, Eric Wolfe and Weston -- are all in Penn State’s Energy and Geoenvironmental Engineering program and took the hands-on fuel science class taught by Alan W. Scaroni, head and professor, Andre Boehman, associate professor, and Sarma V. Pisupati, associate professor in the department.


Hydrogen is a colorless and odorless gas. The U.S. government mandates that all flammable gases must, by law, have an odor. The chemicals used to add a smell to the gas, limit the possibility of using the hydrogen in a fuel cell because the chemicals often poison the cells.

"We came up with a simple system that removes the odorant with adsorbers and then tests to ensure that all the odorant is removed before sending the hydrogen to solid storage and fuel cell," says Weston.

Fuel cells convert the chemical potential of hydrogen and oxygen to electrical potential with heat and water without burning the hydrogen. For a fuel cell to work, the hydrogen must be ultra pure.

Another problem in the conceptualization of hybrid fuel cell vehicles is hydrogen storage. While hydrogen is easily stored as a compressed gas, safety concerns swayed the students to use a technically feasible solid storage method. The students chose a metal hydride system based on magnesium.

The hydrogen in the magnesium hydride is stable up to 554 degrees Fahrenheit, but once heated above that temperature, hydrogen gas is released. The five-passenger General Motors Precept electrical vehicle would require the energy from about 23 pounds of hydrogen to travel 500 miles, the researchers told attendees today (Aug. 19) at the 224th American Chemical Society annual meeting in Boston. The students designed their system for this 500-mile limit.

Fuel cells are not the sole energy source in this hybrid automobile. The battery stacks, which may be charged from an outlet in the garage or by the fuel cells are the primary source of power for short trips and in town driving. The batteries will also power the electric heating units that heat up sections of the magnesium hydride, once the battery stack is drained to a certain capacity. Excess energy from the fuel cells will also recharge the batteries.

"Batteries are now being reduced in size, so the weight of the batteries and the hydrogen fuel system will not make the car too heavy," says Weston. "Because most of the hydrogen is stored as a solid, the automobile may be as safe as today’s cars."

The magnesium hydride fuel storage system is not combustible or pyrophoric, so the stored fuel will not burn or explode. Also, at any time in the system, only a small amount of hydrogen is present as a gas, never leaving enough enclosed hydrogen gas to explode. The fuel cell stack is separate from the rest of the system and well vented. In the case of an accident, mechanical sensors would shut off the hydrogen generation.

Andrea Elyse Messer | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>