Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles fall to feasibility of hybrid fuel cell vehicle

20.08.2002


A series of obstacles fell before the onslaught of a Penn State engineering graduate class as they tackled and found solutions to all the barriers preventing development of a hybrid fuel cell automobile using hydrogen fuel cells and battery storage.



"The professors asked the class to solve the problem of hydrogen odorization," says Jamie Weston, graduate student in energy and geoenvironmental engineering. "We quickly came up with a solution and, took the rest of the course to develop our solution and follow the problems as far as we could."

The students -- Mike Sprague, Hui Long, Ramya Venkataraman, Patrick Flynn, Eric Wolfe and Weston -- are all in Penn State’s Energy and Geoenvironmental Engineering program and took the hands-on fuel science class taught by Alan W. Scaroni, head and professor, Andre Boehman, associate professor, and Sarma V. Pisupati, associate professor in the department.


Hydrogen is a colorless and odorless gas. The U.S. government mandates that all flammable gases must, by law, have an odor. The chemicals used to add a smell to the gas, limit the possibility of using the hydrogen in a fuel cell because the chemicals often poison the cells.

"We came up with a simple system that removes the odorant with adsorbers and then tests to ensure that all the odorant is removed before sending the hydrogen to solid storage and fuel cell," says Weston.

Fuel cells convert the chemical potential of hydrogen and oxygen to electrical potential with heat and water without burning the hydrogen. For a fuel cell to work, the hydrogen must be ultra pure.

Another problem in the conceptualization of hybrid fuel cell vehicles is hydrogen storage. While hydrogen is easily stored as a compressed gas, safety concerns swayed the students to use a technically feasible solid storage method. The students chose a metal hydride system based on magnesium.

The hydrogen in the magnesium hydride is stable up to 554 degrees Fahrenheit, but once heated above that temperature, hydrogen gas is released. The five-passenger General Motors Precept electrical vehicle would require the energy from about 23 pounds of hydrogen to travel 500 miles, the researchers told attendees today (Aug. 19) at the 224th American Chemical Society annual meeting in Boston. The students designed their system for this 500-mile limit.

Fuel cells are not the sole energy source in this hybrid automobile. The battery stacks, which may be charged from an outlet in the garage or by the fuel cells are the primary source of power for short trips and in town driving. The batteries will also power the electric heating units that heat up sections of the magnesium hydride, once the battery stack is drained to a certain capacity. Excess energy from the fuel cells will also recharge the batteries.

"Batteries are now being reduced in size, so the weight of the batteries and the hydrogen fuel system will not make the car too heavy," says Weston. "Because most of the hydrogen is stored as a solid, the automobile may be as safe as today’s cars."

The magnesium hydride fuel storage system is not combustible or pyrophoric, so the stored fuel will not burn or explode. Also, at any time in the system, only a small amount of hydrogen is present as a gas, never leaving enough enclosed hydrogen gas to explode. The fuel cell stack is separate from the rest of the system and well vented. In the case of an accident, mechanical sensors would shut off the hydrogen generation.

Andrea Elyse Messer | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>