Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-Scale Light Source is First to Show Single-Molecule Electroluminescence

12.08.2002


Using photon emissions from individual molecules of silver, researchers at the Georgia Institute of Technology have created what may be the world’s smallest electroluminescent light source.



Believed to be the first demonstration of electroluminescence from individual molecules, the work could lead to new types of nanometer-scale optical interconnects, high-resolution optical microscopy, nanometer-scale lithography and other applications that require very small light sources. And because single molecules are known to emit one photon at a time, the technique could ultimately be the basis for high-efficiency quantum information processing and cryptography.

Though the effect was first reported in silver clusters composed of 2-8 atoms, the researchers also demonstrated electroluminescence in similarly prepared copper clusters, suggesting the effect may broadly apply to other metals. Details of the research were reported in the August 6 issue of the Proceedings of the National Academy of Sciences.


"This is the first time that anyone has seen electroluminescence from individual molecules," said Robert Dickson, assistant professor in Georgia Tech’s School of Chemistry and Biochemistry. "What we have observed involves sub-nanometer scale sources to which an electric field is applied. These molecules emit very strongly, and are very robust."

Dickson and collaborators Tae-Hee Lee and Jose Gonzalez began with thin films of silver oxide that are not electroluminescent. By exposing the film to electrical current of approximately one amp, they "activated" some of the silver oxide molecules, which then appeared within "discolored" regions in the film. When electrodes were attached to the film and an alternating current applied, a thin line of silver clusters began to emit light in colors that varied depending on the size of the clusters. The system operated at room temperature.

"When you zoom in more closely, you can see the emissions coming from single molecules," said Dickson. "They blink and have dipole emission patterns. You see an incredibly thin line of emissive species close to the middle of the sample."


Electroluminescence occurs when an electron recombines with a positively charged molecule from which a single electron has been removed to create an electron-hole pair. First, an electron is removed from a molecule, creating a positive charge. Then, an electron is quickly injected into a different state of the same molecule. Because of the charge differences, the electron is attracted to the hole, and when they recombine, a photon is released.

While normally stimulated by applying direct current (DC), the Georgia Tech group observed a dramatically enhanced response from high frequency alternating current (AC).

While DC voltage produced electroluminescence in the activated silver clusters, Dickson and his colleagues found that high frequency AC voltage -- above 150 megahertz -- produced a response as much as 10,000 times greater. Dickson believes the AC voltage created rapid recombination within single molecules in a very narrow section of a sample, producing the enhanced response. Bulk materials normally cannot respond quickly enough to the alternating current to enhance the electroluminescence to such a large degree.

The AC current was more efficient than DC current at converting electrical current to light because it injects the electron charge at just the right time, minimizing the amount of energy lost to production of heat, Dickson explained. From a practical standpoint, that increases the operating life of the emitting clusters and reduces the amount of current required to produce light, he noted.

"We know that the charge is recombining in the molecules because you can simultaneously measure the electroluminescence and the current, and the peaks are correlated," he said. "This is an extremely interesting materials system, not only because of the single-molecule electroluminescence, but also because of the resonance we see at relatively high frequencies."

Though the discovery may have important implications for optoelectronic devices, Dickson’s group is focusing first on understanding the basic process.

"We are concentrating on understanding the very fundamental aspects of this: what the nature of the emission is, how the emission occurs, the different time scales for electron injection, hole injection and recombination," he said. "We need to know how to better control this before we can begin to use it in nanometer scale devices or as nanometer scale optoelectronic components in circuitry. A lot of engineering will have to be done to make any potential optoelectronic devices both useful and stable."

The electroluminescence research builds on earlier work done by Dickson and colleagues Lynn Peyser and Amy Vinson that demonstrated optical storage potential of thin-film silver oxide clusters. In that work, reported in the journal Science in January 2001, the researchers demonstrated binary optical storage by writing and reading simple images recorded on films of silver oxide nanoparticles activated by light of a specific frequency. That work is continuing, and advances have been made toward potential optical storage systems.

Support for Dickson’s research comes from the Sloan and Dreyfus Foundations, as well as internal Georgia Tech research funds.


RESEARCH NEWS & PUBLICATIONS OFFICE
Georgia Institute of Technology
430 Tenth Street, N.W., Suite N-116
Atlanta, Georgia 30318 USA

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/rnpo.html

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>