Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-Scale Light Source is First to Show Single-Molecule Electroluminescence

12.08.2002


Using photon emissions from individual molecules of silver, researchers at the Georgia Institute of Technology have created what may be the world’s smallest electroluminescent light source.



Believed to be the first demonstration of electroluminescence from individual molecules, the work could lead to new types of nanometer-scale optical interconnects, high-resolution optical microscopy, nanometer-scale lithography and other applications that require very small light sources. And because single molecules are known to emit one photon at a time, the technique could ultimately be the basis for high-efficiency quantum information processing and cryptography.

Though the effect was first reported in silver clusters composed of 2-8 atoms, the researchers also demonstrated electroluminescence in similarly prepared copper clusters, suggesting the effect may broadly apply to other metals. Details of the research were reported in the August 6 issue of the Proceedings of the National Academy of Sciences.


"This is the first time that anyone has seen electroluminescence from individual molecules," said Robert Dickson, assistant professor in Georgia Tech’s School of Chemistry and Biochemistry. "What we have observed involves sub-nanometer scale sources to which an electric field is applied. These molecules emit very strongly, and are very robust."

Dickson and collaborators Tae-Hee Lee and Jose Gonzalez began with thin films of silver oxide that are not electroluminescent. By exposing the film to electrical current of approximately one amp, they "activated" some of the silver oxide molecules, which then appeared within "discolored" regions in the film. When electrodes were attached to the film and an alternating current applied, a thin line of silver clusters began to emit light in colors that varied depending on the size of the clusters. The system operated at room temperature.

"When you zoom in more closely, you can see the emissions coming from single molecules," said Dickson. "They blink and have dipole emission patterns. You see an incredibly thin line of emissive species close to the middle of the sample."


Electroluminescence occurs when an electron recombines with a positively charged molecule from which a single electron has been removed to create an electron-hole pair. First, an electron is removed from a molecule, creating a positive charge. Then, an electron is quickly injected into a different state of the same molecule. Because of the charge differences, the electron is attracted to the hole, and when they recombine, a photon is released.

While normally stimulated by applying direct current (DC), the Georgia Tech group observed a dramatically enhanced response from high frequency alternating current (AC).

While DC voltage produced electroluminescence in the activated silver clusters, Dickson and his colleagues found that high frequency AC voltage -- above 150 megahertz -- produced a response as much as 10,000 times greater. Dickson believes the AC voltage created rapid recombination within single molecules in a very narrow section of a sample, producing the enhanced response. Bulk materials normally cannot respond quickly enough to the alternating current to enhance the electroluminescence to such a large degree.

The AC current was more efficient than DC current at converting electrical current to light because it injects the electron charge at just the right time, minimizing the amount of energy lost to production of heat, Dickson explained. From a practical standpoint, that increases the operating life of the emitting clusters and reduces the amount of current required to produce light, he noted.

"We know that the charge is recombining in the molecules because you can simultaneously measure the electroluminescence and the current, and the peaks are correlated," he said. "This is an extremely interesting materials system, not only because of the single-molecule electroluminescence, but also because of the resonance we see at relatively high frequencies."

Though the discovery may have important implications for optoelectronic devices, Dickson’s group is focusing first on understanding the basic process.

"We are concentrating on understanding the very fundamental aspects of this: what the nature of the emission is, how the emission occurs, the different time scales for electron injection, hole injection and recombination," he said. "We need to know how to better control this before we can begin to use it in nanometer scale devices or as nanometer scale optoelectronic components in circuitry. A lot of engineering will have to be done to make any potential optoelectronic devices both useful and stable."

The electroluminescence research builds on earlier work done by Dickson and colleagues Lynn Peyser and Amy Vinson that demonstrated optical storage potential of thin-film silver oxide clusters. In that work, reported in the journal Science in January 2001, the researchers demonstrated binary optical storage by writing and reading simple images recorded on films of silver oxide nanoparticles activated by light of a specific frequency. That work is continuing, and advances have been made toward potential optical storage systems.

Support for Dickson’s research comes from the Sloan and Dreyfus Foundations, as well as internal Georgia Tech research funds.


RESEARCH NEWS & PUBLICATIONS OFFICE
Georgia Institute of Technology
430 Tenth Street, N.W., Suite N-116
Atlanta, Georgia 30318 USA

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/rnpo.html

More articles from Power and Electrical Engineering:

nachricht EU research project DEMETER strives for innovation in enzyme production technology
30.05.2017 | Deutsches Biomasseforschungszentrum

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>