Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles used in solar energy conversion

09.08.2002


An enormous source of clean energy is available to us. We see it almost every day. It’s just a matter of harnessing it.



The problem with solar energy is that it has not been inexpensive enough in the past. David Kelley, professor of chemistry at Kansas State University, developed a new type of nanoparticle -- a tiny chemical compound far too small to be seen with the naked eye -- that may reap big dividends in solar power.

Kelley’s team is studying the properties and technical problems of gallium selenide nanoparticles. The properties of the nanoparticle change as the size changes. One of those properties is the part of the light spectrum it absorbs.


"You can make dramatically different colors just by changing the size of the nanoparticles," Kelley said.

Kelley is developing nanoparticles that are just the right size for solar cells -- they can absorb all visible light but nothing from the invisible light at the red end of the spectrum, which would reduce voltage.

"The correct-sized nanoparticles look dark red to black. There is an optimum size and that’s what you want to shoot for," Kelley said.

Today’s solar panels are made with silicon. The silicon usually has impurities, which limits its efficiency. Purifying a chemical is too expensive. For that reason, smaller is better. One can fit as many nanoparticles into a golf ball as one can fit beach balls into the earth.

Only a tiny percentage of a piece of material has impurities. If the entire chunk of material makes one crystal in a solar panel, the crystal will not work. But if that chunk is broken up into 100 tiny nanoparticles, then only the few unlucky nanoparticles with the impurities will not function. All the other nanoparticles will be pure and therefore will work.

Kelley said he is a long way from developing compounds that are comparable to today’s silicon solar cells, because the physics of nanoparticles is so poorly understood. By using gallium selenide, Kelley is laying the groundwork for a similar, but more complex and potentially more effective nanoparticle called indium selenide. It is difficult to make silicon nanoparticles, but indium selenide has great potential for nanoparticle solar cells, Kelley said.

"The idea is to make large, high-output solar voltaic panels that are dirt cheap to produce. It’s only then that the price starts to become competitive with burning fossil fuels," Kelley said.

He nearly had to start from scratch. His team invented gallium selenide nanoparticles. Kelley said he knew six years ago that many semiconductor materials had potential use in solar power, but were not being studied because there were no methods to make them into nanoparticles.

"All these really interesting materials were being ignored and I thought it just can’t be allowed to stay that way," Kelley said.


###
The study on the methods to produce the nanoparticles was published in the journal "Nano Letters" this year. The project was funded by the U.S. Department of Energy’s Solar Photochemistry Program in Basic Energy Sciences.


David Kelley | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>