Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles used in solar energy conversion

09.08.2002


An enormous source of clean energy is available to us. We see it almost every day. It’s just a matter of harnessing it.



The problem with solar energy is that it has not been inexpensive enough in the past. David Kelley, professor of chemistry at Kansas State University, developed a new type of nanoparticle -- a tiny chemical compound far too small to be seen with the naked eye -- that may reap big dividends in solar power.

Kelley’s team is studying the properties and technical problems of gallium selenide nanoparticles. The properties of the nanoparticle change as the size changes. One of those properties is the part of the light spectrum it absorbs.


"You can make dramatically different colors just by changing the size of the nanoparticles," Kelley said.

Kelley is developing nanoparticles that are just the right size for solar cells -- they can absorb all visible light but nothing from the invisible light at the red end of the spectrum, which would reduce voltage.

"The correct-sized nanoparticles look dark red to black. There is an optimum size and that’s what you want to shoot for," Kelley said.

Today’s solar panels are made with silicon. The silicon usually has impurities, which limits its efficiency. Purifying a chemical is too expensive. For that reason, smaller is better. One can fit as many nanoparticles into a golf ball as one can fit beach balls into the earth.

Only a tiny percentage of a piece of material has impurities. If the entire chunk of material makes one crystal in a solar panel, the crystal will not work. But if that chunk is broken up into 100 tiny nanoparticles, then only the few unlucky nanoparticles with the impurities will not function. All the other nanoparticles will be pure and therefore will work.

Kelley said he is a long way from developing compounds that are comparable to today’s silicon solar cells, because the physics of nanoparticles is so poorly understood. By using gallium selenide, Kelley is laying the groundwork for a similar, but more complex and potentially more effective nanoparticle called indium selenide. It is difficult to make silicon nanoparticles, but indium selenide has great potential for nanoparticle solar cells, Kelley said.

"The idea is to make large, high-output solar voltaic panels that are dirt cheap to produce. It’s only then that the price starts to become competitive with burning fossil fuels," Kelley said.

He nearly had to start from scratch. His team invented gallium selenide nanoparticles. Kelley said he knew six years ago that many semiconductor materials had potential use in solar power, but were not being studied because there were no methods to make them into nanoparticles.

"All these really interesting materials were being ignored and I thought it just can’t be allowed to stay that way," Kelley said.


###
The study on the methods to produce the nanoparticles was published in the journal "Nano Letters" this year. The project was funded by the U.S. Department of Energy’s Solar Photochemistry Program in Basic Energy Sciences.


David Kelley | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht New welding process joins dissimilar sheets better
28.09.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Cooling buildings with solar heat
26.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>