Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students' Device Aims to Protect Electric Utility Workers

28.07.2008
Engineering students at Johns Hopkins have invented a tool that would allow utility workers to disconnect power lines from residential transformers at a safe distance, beyond the range of dangerous electrical arcs.

Their prototype, built at the request of a local utility company, consists of a lightweight aluminum frame that uses rope and a lever-and-pulley system to enable the worker to detach a transformer’s power connector, known as a load break elbow.

This operation sometimes triggers an explosive arc that can cause serious skin burns and eye injuries. Such arcs can travels as far as 8 feet from the transformer, but the students’ device would enable workers to disconnect the line from 10 to 12 feet away.

“We’re very pleased with the outcome of this project,” said Bruce R. Hirsch, a Baltimore Gas & Electric Co. representative who worked with the students. “What they’ve given us is a good start. It’s a very simple design, and they’ve suggested some further refinements. This device was made to enhance the safety of our people, and that’s BGE’s top priority.”

To acquire the new safety tool, the utility last year turned to Johns Hopkins undergraduates enrolled in the two-semester Engineering Design Project course, offered by the Department of Mechanical Engineering. BGE’s project was aimed at protecting technicians who work in the above-ground, pad-mounted transformer boxes commonly found in residential neighborhoods.

Currently, because of the risk of an electrical arc, such workers must wear safety goggles, flame retardant clothing, protective gloves and a hard hat, and must use an 8-foot-long “hot stick” to disconnect lines that typically carry 7,600 volts. BGE asked the students to devise a system that would allow the workers to remove such lines from 10 to 12 feet away, beyond the reach of an explosive arc.

The utility’s challenge was assigned to a team consisting of seniors Kyle Azevedo of Bridgewater, Conn.; Julie Blumreiter of Muskego, Wis.; and Doo Hyun Lee of Seoul, Korea. BGE provided an unpowered out-of-service residential transformer box for the team members to use in developing their tool.

The students initially considered complex designs that would employ hydraulic or pneumatic power. “We finally decided on an all-mechanical design that would require no batteries or motors,” said Azevedo. “One of our primary goals for this tool was simplicity.”

The finished prototype features three guide rails that surround the transformer’s elbow connection. A sliding component of the device houses a clamp that grabs onto the connector. The utility technician can then use the lever and pulley system to detach the power line from a safe distance. Compared to the current hot stick procedure, their device requires the worker to exert only a third as much force, the students said.

The students’ tool also should be simple to transport and utilize during repair assignments. “We wanted to make this device as small and as light as possible so that one worker could easily operate it alone,” said Lee.

The undergraduates spent about $9,600 to make the prototype but estimated that it could be mass-produced for far less. The prototype has been turned over to BGE, which will conduct further tests and consider refinements in the device before deciding whether to deploy it in the field.

The student inventors, who recently received their diplomas, viewed the engineering design course an important part of their education. “It gave us the chance to apply a lot of the knowledge we’d been gathering over the previous three years from lectures and textbooks,” Blumreiter said. “In working through this project, we got real-life experience in the design, manufacturing and assembly processes.”

Blumreiter and Azevedo are planning to enter graduate engineering programs at Stanford University and Georgia Tech, respectively. Lee plans to begin working soon as a structural analysis engineer in New Jersey.

The utility worker’s device was one of nine Johns Hopkins projects completed this year by undergraduates in the engineering design course, taught by Mike Johnson and other faculty members in the Department of Mechanical Engineering. Each team of three or four students, usually working within budgets of up to $12,000, had to design a device, purchase or fabricate the parts and assemble the final product. Corporations, government agencies and nonprofit groups provide the assignments and collaborate with the students. The course is traditionally a well-received, hands-on engineering experience for Johns Hopkins undergraduates.

Color images of the students and the device available; contact Phil Sneiderman.

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu
http://www.me.jhu.edu/
http://www.bge.com/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>