Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students' Device Aims to Protect Electric Utility Workers

28.07.2008
Engineering students at Johns Hopkins have invented a tool that would allow utility workers to disconnect power lines from residential transformers at a safe distance, beyond the range of dangerous electrical arcs.

Their prototype, built at the request of a local utility company, consists of a lightweight aluminum frame that uses rope and a lever-and-pulley system to enable the worker to detach a transformer’s power connector, known as a load break elbow.

This operation sometimes triggers an explosive arc that can cause serious skin burns and eye injuries. Such arcs can travels as far as 8 feet from the transformer, but the students’ device would enable workers to disconnect the line from 10 to 12 feet away.

“We’re very pleased with the outcome of this project,” said Bruce R. Hirsch, a Baltimore Gas & Electric Co. representative who worked with the students. “What they’ve given us is a good start. It’s a very simple design, and they’ve suggested some further refinements. This device was made to enhance the safety of our people, and that’s BGE’s top priority.”

To acquire the new safety tool, the utility last year turned to Johns Hopkins undergraduates enrolled in the two-semester Engineering Design Project course, offered by the Department of Mechanical Engineering. BGE’s project was aimed at protecting technicians who work in the above-ground, pad-mounted transformer boxes commonly found in residential neighborhoods.

Currently, because of the risk of an electrical arc, such workers must wear safety goggles, flame retardant clothing, protective gloves and a hard hat, and must use an 8-foot-long “hot stick” to disconnect lines that typically carry 7,600 volts. BGE asked the students to devise a system that would allow the workers to remove such lines from 10 to 12 feet away, beyond the reach of an explosive arc.

The utility’s challenge was assigned to a team consisting of seniors Kyle Azevedo of Bridgewater, Conn.; Julie Blumreiter of Muskego, Wis.; and Doo Hyun Lee of Seoul, Korea. BGE provided an unpowered out-of-service residential transformer box for the team members to use in developing their tool.

The students initially considered complex designs that would employ hydraulic or pneumatic power. “We finally decided on an all-mechanical design that would require no batteries or motors,” said Azevedo. “One of our primary goals for this tool was simplicity.”

The finished prototype features three guide rails that surround the transformer’s elbow connection. A sliding component of the device houses a clamp that grabs onto the connector. The utility technician can then use the lever and pulley system to detach the power line from a safe distance. Compared to the current hot stick procedure, their device requires the worker to exert only a third as much force, the students said.

The students’ tool also should be simple to transport and utilize during repair assignments. “We wanted to make this device as small and as light as possible so that one worker could easily operate it alone,” said Lee.

The undergraduates spent about $9,600 to make the prototype but estimated that it could be mass-produced for far less. The prototype has been turned over to BGE, which will conduct further tests and consider refinements in the device before deciding whether to deploy it in the field.

The student inventors, who recently received their diplomas, viewed the engineering design course an important part of their education. “It gave us the chance to apply a lot of the knowledge we’d been gathering over the previous three years from lectures and textbooks,” Blumreiter said. “In working through this project, we got real-life experience in the design, manufacturing and assembly processes.”

Blumreiter and Azevedo are planning to enter graduate engineering programs at Stanford University and Georgia Tech, respectively. Lee plans to begin working soon as a structural analysis engineer in New Jersey.

The utility worker’s device was one of nine Johns Hopkins projects completed this year by undergraduates in the engineering design course, taught by Mike Johnson and other faculty members in the Department of Mechanical Engineering. Each team of three or four students, usually working within budgets of up to $12,000, had to design a device, purchase or fabricate the parts and assemble the final product. Corporations, government agencies and nonprofit groups provide the assignments and collaborate with the students. The course is traditionally a well-received, hands-on engineering experience for Johns Hopkins undergraduates.

Color images of the students and the device available; contact Phil Sneiderman.

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu
http://www.me.jhu.edu/
http://www.bge.com/

More articles from Power and Electrical Engineering:

nachricht Heavy metals in water meet their match
28.07.2017 | Swansea University

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>