Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar cooling becomes a new air-conditioning system

15.07.2008
Scientists from the Universidad Carlos III of Madrid (UC3M) and the Consejo Superior de Investigaciones Científicas (CSIC) have developed an environmentally friendly cooling technology that does not harm the ozone layer. This is achieved by using solar energy and therefore reducing the use of greenhouse gases.

A research team has designed and built an absorption chiller capable of using solar and residual heat as an energy source to drive the cooling system. The technology used in this machine, which looks like an ordinary air-conditioning system, minimises its environmental impact by combining the use of a lithium bromide solution, which does not damage the ozone layer or increase the greenhouse effect, with a reduction in the use of water by the machine.

The team, managed by Professor Marcelo Izquierdo from the Department of Thermal Engineering and Fluid Mechanics of the UC3M, who is also a researcher at the Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC) of the CSIC, is building a solar cooling system that unlike the existing machines on the market, uses an improved absorption mechanism capable of producing cold water at a range of temperatures from 7º C to 18º C when the exterior temperature ranges from 33º C to 43º C.

Residential use

Professor Marcelo Izquierdo states that the conclusions reached by a study with a commercial air condensed absorption machine prove that given an outside temperature ranging from 28ºC and 34ºC, the machine can produce cold water at a range of 12 to 16ºC, with a source temperature at the generator between 80ºC to 95ºC. Under these conditions, the cold water produced can be used for climate control applications in houses by combining it with a water-to-air heat exchanger (fan coil).

Quoting Raquel Lizarte, a researcher at the Department of Thermal Engineering and Fluid Mechanics of the UC3M, “There are few absorption machines at a commercial level that are adapted for residential use”, and since it is very hard to go without climate control, it is important to find a cooling technology that has minimal environmental impact. “The machine that we're studying produces enough cold water to cool down a room of 40 m2 of floor area and with a volume of 120 m3”, she states.

In 2007, 191 countries were involved in the Montreal protocol; a signed agreement to avoid the use of ozone depleting substances such as the HCFC refrigerants used in the air-conditioning industry as well as to set a limit such that by the year 2010 the energy consumption should be just 25% of the level that was allowed in 1996. Also, by the year 2020 all the HCFC refrigerants used in developed countries will have to be replaced with substitutes. This protocol makes research into this kind of technology extremely important for the near future.

The study has been published in the current edition of the magazine Applied Thermal Engineering under the title: ‘Air conditioning using an air-cooled single effect lithium bromide absorption chiller: Results of a trial conducted in Madrid in August 2005’. In this investigation scientists from the Universidad Carlos III of Madrid and Universidad Nacional de Educación a Distancia have collaborated under the coordination of the Instituto de Ciencias de la Construcción Eduardo Torroja-CSIC.

| alfa
Further information:
http://www.elsevier.com
http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>