Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar cooling becomes a new air-conditioning system

15.07.2008
Scientists from the Universidad Carlos III of Madrid (UC3M) and the Consejo Superior de Investigaciones Científicas (CSIC) have developed an environmentally friendly cooling technology that does not harm the ozone layer. This is achieved by using solar energy and therefore reducing the use of greenhouse gases.

A research team has designed and built an absorption chiller capable of using solar and residual heat as an energy source to drive the cooling system. The technology used in this machine, which looks like an ordinary air-conditioning system, minimises its environmental impact by combining the use of a lithium bromide solution, which does not damage the ozone layer or increase the greenhouse effect, with a reduction in the use of water by the machine.

The team, managed by Professor Marcelo Izquierdo from the Department of Thermal Engineering and Fluid Mechanics of the UC3M, who is also a researcher at the Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC) of the CSIC, is building a solar cooling system that unlike the existing machines on the market, uses an improved absorption mechanism capable of producing cold water at a range of temperatures from 7º C to 18º C when the exterior temperature ranges from 33º C to 43º C.

Residential use

Professor Marcelo Izquierdo states that the conclusions reached by a study with a commercial air condensed absorption machine prove that given an outside temperature ranging from 28ºC and 34ºC, the machine can produce cold water at a range of 12 to 16ºC, with a source temperature at the generator between 80ºC to 95ºC. Under these conditions, the cold water produced can be used for climate control applications in houses by combining it with a water-to-air heat exchanger (fan coil).

Quoting Raquel Lizarte, a researcher at the Department of Thermal Engineering and Fluid Mechanics of the UC3M, “There are few absorption machines at a commercial level that are adapted for residential use”, and since it is very hard to go without climate control, it is important to find a cooling technology that has minimal environmental impact. “The machine that we're studying produces enough cold water to cool down a room of 40 m2 of floor area and with a volume of 120 m3”, she states.

In 2007, 191 countries were involved in the Montreal protocol; a signed agreement to avoid the use of ozone depleting substances such as the HCFC refrigerants used in the air-conditioning industry as well as to set a limit such that by the year 2010 the energy consumption should be just 25% of the level that was allowed in 1996. Also, by the year 2020 all the HCFC refrigerants used in developed countries will have to be replaced with substitutes. This protocol makes research into this kind of technology extremely important for the near future.

The study has been published in the current edition of the magazine Applied Thermal Engineering under the title: ‘Air conditioning using an air-cooled single effect lithium bromide absorption chiller: Results of a trial conducted in Madrid in August 2005’. In this investigation scientists from the Universidad Carlos III of Madrid and Universidad Nacional de Educación a Distancia have collaborated under the coordination of the Instituto de Ciencias de la Construcción Eduardo Torroja-CSIC.

| alfa
Further information:
http://www.elsevier.com
http://www.elsevier.com/wps/find/journaldescription.cws_home/630/description#description

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>