Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's smallest high performance, low energy sensor

03.07.2008
Scientists at the University of Southampton’s School of Electronics and Computer Science (ECS) are developing the world’s smallest, high-performance and low-power sensor in silicon which will have applications in biosensing and environmental monitoring.

Professor Hiroshi Mizuta and his team at ECS are part of the three year European FP7-funded NEMSIC (Nano-electro-mechanical-system-integrated-circuits) project which will make these devices possible.

As well as being the smallest sensor on the market to date, it will have extreme sensitivity and very low power consumption. It will achieve this by co-integrating single-electron transistors (SETs) and nano-electro-mechanical systems (NEMS) on a common silicon technology platform.

‘Power consumption is a big issue at the moment as devices use current whether they are switched off and on’ said Professor Mizuta. ‘The single-electron transistor combined with the NEM device technology reduces power consumption at both ON and OFF states of the sensor. Stand-by power is reduced to zero by having a complete sleep with the NEM switch when it is off.’

Professor Mizuta and his team will develop the single-electron transistor with a unique suspended silicon nanobridge which will work as an extremely sensitive detector for biological and chemical molecules.

‘This is the first time that anyone has combined these two nanotechnologies to develop a smart sensor,’ said Professor Mizuta. ‘The traditional CMOS (Complementary metal-oxide-semiconductor) approach has many limitations so we needed to find a new approach.’

The sensing devices will need to be made to the nanoscale, which will be made possible by the new electron beam lithography machine which will be available in the new ECS Mountbatten building when it opens in July.

‘This sensor will be the smallest and use less power than any other on the market,’ said Professor Mizuta. ‘The fact that it will be at the nanoscale means that it will be able to detect either single-charge transfer and/or change in masses caused by a small amount of chemical and biological molecules electrically’.

NEMSIC is headed by Professor Adrian Ionescu of Ecole Polytechnique Fédérale de Lausanne and other partners are: Delft University of Technology, Stitching IMEC Nederland, Commissariat à l’Energie Atomique – Laboratoire d’Electronique de la Technologie de l’Information, SCIPROM Sarl, Interuniversity Micro-electronics Center, Honeywell Romania SRL – Sensors Laboratory Bucharest, Université de Genève.

Helene Murphy | alfa
Further information:
http://www.ecs.soton.ac.uk
http://www.ecs.soton.ac.uk/research/mountbatten.php

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>