Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Electron trapping' may impact future microelectronics measurements

01.07.2008
Using an ultra-fast method of measuring how a transistor switches from the "off" to the "on" state, researchers at the National Institute of Standards and Technology (NIST) recently reported that they have uncovered an unusual phenomenon that may impact how manufacturers estimate the lifetime of future nanoscale electronics.

The transistor is one of the basic building blocks of modern electronics, and the life expectancy or reliability of a transistor is often projected based on the response to an accelerated stress condition. Changes in the transistor's threshold voltage (the point at which it switches on) are typically monitored during these lifetime projections.

The threshold voltage of certain types of transistors (p-type) is known to shift during accelerated stresses involving negative voltages and elevated temperatures, a characteristic known as "negative bias temperature instability" (NBTI). This threshold voltage shift recovers to varying degrees once the stress has ended. This "recovery" makes the task of measuring the threshold voltage shift very challenging and greatly complicates the prediction of a transistor's lifetime.

As semiconductor devices reach nanoscale (billionth of a meter) dimensions, measuring this device reliability accurately becomes more important because of new materials, new structures, higher operating temperatures and quantum mechanical effects. Many NBTI studies show that the accuracy of the measured threshold voltage shift (and consequent accuracy of the lifetime prediction) depends strongly on how quickly the threshold voltage can be measured after the stress is finished. So, NIST engineers began making threshold voltage measurements at very fast speeds, leaving as little as two microsceconds (millionths of a second) between measurements instead of the traditional half-second interval. What they observed was surprising.

"We found that NBTI recovery not only returned the threshold voltage to its pre-stressed state but briefly passed this mark and temporarily allowed the transistor to behave better than the pre-stressed state," says Jason Campbell, a member of the NIST team (that includes Kin Cheung and John Suehle) who presented this finding at the recent Symposium on VLSI Technology in Hawaii. The NBTI effect generally is believed to result from the buildup of positive charges, he explained, but the new observations at NIST indicate the presence of negative charge as well. NIST's ultra-fast and ultra-sensitive measurements revealed that during recovery, the positive charges dissipated faster than the electrons, giving the system a momentary negative charge and heightened conductivity.

To date, Campbell says, transistor manufacturers only consider the accumulation of positive charges to predict the longevity of their microelectronics devices. "But as these systems get smaller and smaller, the electron trapping phenomenon we observed will need to be considered as well to ensure that transistor lifetime predictions stay accurate," he says. "Our research will now focus on developing and refining the ability to measure that impact."

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>