Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Electron trapping' may impact future microelectronics measurements

01.07.2008
Using an ultra-fast method of measuring how a transistor switches from the "off" to the "on" state, researchers at the National Institute of Standards and Technology (NIST) recently reported that they have uncovered an unusual phenomenon that may impact how manufacturers estimate the lifetime of future nanoscale electronics.

The transistor is one of the basic building blocks of modern electronics, and the life expectancy or reliability of a transistor is often projected based on the response to an accelerated stress condition. Changes in the transistor's threshold voltage (the point at which it switches on) are typically monitored during these lifetime projections.

The threshold voltage of certain types of transistors (p-type) is known to shift during accelerated stresses involving negative voltages and elevated temperatures, a characteristic known as "negative bias temperature instability" (NBTI). This threshold voltage shift recovers to varying degrees once the stress has ended. This "recovery" makes the task of measuring the threshold voltage shift very challenging and greatly complicates the prediction of a transistor's lifetime.

As semiconductor devices reach nanoscale (billionth of a meter) dimensions, measuring this device reliability accurately becomes more important because of new materials, new structures, higher operating temperatures and quantum mechanical effects. Many NBTI studies show that the accuracy of the measured threshold voltage shift (and consequent accuracy of the lifetime prediction) depends strongly on how quickly the threshold voltage can be measured after the stress is finished. So, NIST engineers began making threshold voltage measurements at very fast speeds, leaving as little as two microsceconds (millionths of a second) between measurements instead of the traditional half-second interval. What they observed was surprising.

"We found that NBTI recovery not only returned the threshold voltage to its pre-stressed state but briefly passed this mark and temporarily allowed the transistor to behave better than the pre-stressed state," says Jason Campbell, a member of the NIST team (that includes Kin Cheung and John Suehle) who presented this finding at the recent Symposium on VLSI Technology in Hawaii. The NBTI effect generally is believed to result from the buildup of positive charges, he explained, but the new observations at NIST indicate the presence of negative charge as well. NIST's ultra-fast and ultra-sensitive measurements revealed that during recovery, the positive charges dissipated faster than the electrons, giving the system a momentary negative charge and heightened conductivity.

To date, Campbell says, transistor manufacturers only consider the accumulation of positive charges to predict the longevity of their microelectronics devices. "But as these systems get smaller and smaller, the electron trapping phenomenon we observed will need to be considered as well to ensure that transistor lifetime predictions stay accurate," he says. "Our research will now focus on developing and refining the ability to measure that impact."

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>