Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen Ions for Fuel Cells Get Loose at Low(er) Temperatures

27.06.2008
Seeking to understand a new fuel cell material, a research team working at the National Institute of Standards and Technology (NIST), in collaboration with the University of Liverpool, has uncovered a novel structure that moves oxygen ions through the cell at substantially lower temperatures than previously thought possible.

The finding announced this month in Nature Materials may be key to solving fuel cell reliability issues and lead to reduced operating costs in high-performance stationary fuel cells.

Electricity is produced in fuel cells from the electrochemical reaction between a hydrogen-rich fuel and oxygen that produces electric current and water. Research on small fuel cells for cars has dominated the news, but stationary fuel cells are the Goliaths—operating at up to 70 percent efficiency and providing enough electricity—up to 100 megawatts—to power small cities, hospitals, military installations or airports without relying on the electric power grid. Smaller versions are being considered for auxiliary power units in such applications as refrigeration trucks to reduce engine idling.

They are called “solid oxide” fuel cells (SOFCs) because the heart of the cell is a solid electrolyte that transports oxygen ions extracted from air to meet with hydrogen atoms. This alchemy traditionally requires high temperatures—about 850 degrees Celsius in conventional SOFCs—and therefore long startup times, ranging from 45 minutes to eight hours.

The high temperatures necessitate more expensive materials and higher operating costs, so stationary fuel cell research is focused on lowering operating temperatures as well as shortening startup times. The U.S. Department of Energy’s goal is to slash the startup time to two minutes.

Chemists at the University of Liverpool fabricated a new oxygen ion electrolyte material of lanthanum, strontium, gallium and oxygen and sent it to the NIST Center for Neutron Research (NCNR) to investigate with collaborators from NIST, the University of Maryland and University College London. Neutrons provide an atomic-scale view of materials so scientists can “see” what is happening at that level.

The oxygen ions in the new materials become mobile at 600 degrees C, much lower than previously studied materials. Researchers suspected the reason lay in the location of the oxygen ions in the crystal framework of the compound. The neutron probes allowed them to determine the basic crystal structure that held the lanthanum, strontium, gallium and oxygen atoms, however the exact nature of the extra oxygen ions was unclear.

NCNR researchers recommended borrowing a method from radio astronomy called maximum entropy analysis. “When astronomers are not able to visualize a specific part of an image because it constitutes such a small part of the total information collected, they utilize a part of applied mathematics called information theory to reconstruct a sharper image,” explains NCNR researcher Mark Green. “The combination of neutron diffraction and maximum entropy analysis not only allowed us to determine the location of additional oxygen ions outside of the basic framework, but revealed a new mechanism for ion conduction.”

“It allows us to take a fundamentally different approach in the design of future materials, so that we can harness this new mechanism for oxide ion conduction and produce lower operating fuel cells,” says Green. “This type of work is very important to us, which is why as part of the NCNR expansion we are developing a new materials diffractometer that will greatly enhance our capabilities in energy related research.”

* X. Kuang, M.A. Green, H. Niu, P Zajdel, C. Dickinson, J.B. Claridge, L. Jantsky and M.J. Rosseinsky. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nature Materials, June 2008

Evelyn Brown | newswise
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>