Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic Arm Combines Manipulation of Objects with Mobility

05.06.2008
Researchers have given a mobile robotic arm the ability to manipulate objects by allowing it to "see" its environment through a digital camera. Giving mobile robots the ability to manipulate objects will extend their uses in many areas including medical care, household assistance and planetary exploration.

Movies portray robots that can move through the world as easily as humans, and use their hands to operate everything from dishwashers to computers with ease. But in reality, the creation of robots with these skills remains a major challenge. Researchers at the University of Massachusetts Amherst are solving this problem by giving a mobile robotic arm the ability to “see” its environment through a digital camera.

“Mobile robots play an important role in many settings, including planetary exploration and manufacturing,” says Dov Katz, a doctoral student of computer science. “Giving them the ability to manipulate objects will extend their use in medical care and household assistance.”

Results of experiments performed by Katz and Oliver Brock, a professor of computer science, were presented at the Proceedings of the International Electrical and Electronics Engineers Conference on Robotics and Automation May 21 in Pasadena, Calif.

So far, the team has successfully taught their creation, dubbed the UMan, or UMass Mobile Manipulator, to approach unfamiliar objects, such as scissors, garden shears and jointed wooden toys – and learn how they work by pushing on them and observing how they change, the same process used by children as they explore the world.

Like a child forming a memory, UMan then stores this knowledge of how the objects move as a “kinematic model” which can be used to perform specific tasks, such as opening scissors and shears to a 90 degree angle. Video shot by the team shows UMan easily completing this task.

According to Katz, teaching the UMan, to “walk” was the easy part. “UMan sits on a base with four wheels that allow it to move in any direction, and a system of lasers keeps it from bumping into objects by judging their distance from the base,” says Katz, who filmed the UMan taking its first trip around the laboratory navigating through a maze of boxes.

What turned out to be harder was teaching the robotic arm to manipulate objects.
“Robots in factories perform complex tasks with ease, but one screw out of place can shut down the entire assembly line,” say Katz, who recently met with representatives from Toyota Motors. “Giving robots the same skills as humans turned out to be much more difficult than we imagined, which is why we don’t have robots working in unstructured environments like homes.”

The key was giving the UMan eyes in the form of a digital camera that sits on the wrist. Once they added the camera, which coupled manipulating objects with the ability to “see,” the complex computer algorithms needed to instruct the UMan to perform specific tasks became much simpler.

A video shot by the team shows what the UMan “sees” as it approaches a jointed wooden toy on a wooden table, which appears as a uniform field of green dots. The first gentle touch from the hand quickly separates the toy from the background, and moving the various parts eventually labels each section with a specific color, identifying all the moving pieces and the joints holding them together. UMan then stores this knowledge, and can use it to put the object in a specific shape.

Future research by Katz and Brock will focus on teaching UMan to operate different types of machines, including doorknobs and light switches, and work on taking UMan’s manipulation skills into three dimensions.

“Once robots learn to combine movement, perception and the manipulation of objects, they will be able to perform meaningful work in environments that are unstructured and constantly changing,” says Katz. “At that point, we will have robots that can explore new planets and clean houses in a flexible way.”

Dov Katz | newswise
Further information:
http://www.nsm.umass.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>