Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robotic Arm Combines Manipulation of Objects with Mobility

Researchers have given a mobile robotic arm the ability to manipulate objects by allowing it to "see" its environment through a digital camera. Giving mobile robots the ability to manipulate objects will extend their uses in many areas including medical care, household assistance and planetary exploration.

Movies portray robots that can move through the world as easily as humans, and use their hands to operate everything from dishwashers to computers with ease. But in reality, the creation of robots with these skills remains a major challenge. Researchers at the University of Massachusetts Amherst are solving this problem by giving a mobile robotic arm the ability to “see” its environment through a digital camera.

“Mobile robots play an important role in many settings, including planetary exploration and manufacturing,” says Dov Katz, a doctoral student of computer science. “Giving them the ability to manipulate objects will extend their use in medical care and household assistance.”

Results of experiments performed by Katz and Oliver Brock, a professor of computer science, were presented at the Proceedings of the International Electrical and Electronics Engineers Conference on Robotics and Automation May 21 in Pasadena, Calif.

So far, the team has successfully taught their creation, dubbed the UMan, or UMass Mobile Manipulator, to approach unfamiliar objects, such as scissors, garden shears and jointed wooden toys – and learn how they work by pushing on them and observing how they change, the same process used by children as they explore the world.

Like a child forming a memory, UMan then stores this knowledge of how the objects move as a “kinematic model” which can be used to perform specific tasks, such as opening scissors and shears to a 90 degree angle. Video shot by the team shows UMan easily completing this task.

According to Katz, teaching the UMan, to “walk” was the easy part. “UMan sits on a base with four wheels that allow it to move in any direction, and a system of lasers keeps it from bumping into objects by judging their distance from the base,” says Katz, who filmed the UMan taking its first trip around the laboratory navigating through a maze of boxes.

What turned out to be harder was teaching the robotic arm to manipulate objects.
“Robots in factories perform complex tasks with ease, but one screw out of place can shut down the entire assembly line,” say Katz, who recently met with representatives from Toyota Motors. “Giving robots the same skills as humans turned out to be much more difficult than we imagined, which is why we don’t have robots working in unstructured environments like homes.”

The key was giving the UMan eyes in the form of a digital camera that sits on the wrist. Once they added the camera, which coupled manipulating objects with the ability to “see,” the complex computer algorithms needed to instruct the UMan to perform specific tasks became much simpler.

A video shot by the team shows what the UMan “sees” as it approaches a jointed wooden toy on a wooden table, which appears as a uniform field of green dots. The first gentle touch from the hand quickly separates the toy from the background, and moving the various parts eventually labels each section with a specific color, identifying all the moving pieces and the joints holding them together. UMan then stores this knowledge, and can use it to put the object in a specific shape.

Future research by Katz and Brock will focus on teaching UMan to operate different types of machines, including doorknobs and light switches, and work on taking UMan’s manipulation skills into three dimensions.

“Once robots learn to combine movement, perception and the manipulation of objects, they will be able to perform meaningful work in environments that are unstructured and constantly changing,” says Katz. “At that point, we will have robots that can explore new planets and clean houses in a flexible way.”

Dov Katz | newswise
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>