Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers look to cut Europe’s energy bill

04.06.2008
The energy we use to heat our homes and offices consumes almost 40 per-cent of the total energy used across Europe.

And with oil prices soaring and gas supplies dwindling, alarm bells are ringing in Brussels, says Professor Nashwan Dawood, the University of Teesside’s Cecil M Yuill Professor of Construction and Director of the Centre for Construction Innovation & Research (CCIR).

His ten-strong research team at the University of Teesside, Middlesbrough, England, is a key contributor to a €4m research project known as IntUBE - Intelligent Use of Buildings' Energy Information.

The goal: to improve energy efficiency in our homes and offices without compromising on comfort. Financed by the European Union’s Seventh Framework Programme, IntUBE has brought together researchers and business partners from nine countries with the aim of helping the construction industry and the EU improve energy efficiency by 20% before 2020.

Professor Dawood was invited to join the project because of he is an international expert on using virtual technologies to examine energy efficiency.

He says: “Part of the answer is to use IT technology to intelligently analyse and control the consumption of energy, not just in new buildings, but also in existing homes and offices.

“Of course, we could simply tell everyone to cut down on heating and lighting. But that is not likely to work. If our offices become unbearably hot, people will reach for the air-conditioning or, if it gets too cold at home, hit the central heating button.

“The key is to give the individual more information about his or her energy consumption and more intelligent control-systems that will allow people to use their energy in a much more efficient way.”

Professor Dawood adds that the EU realises it will never reach its ambitious 20 per-cent target to improve energy efficiency if it only concentrates on new and renovated buildings - and that’s where IntUBE comes in!

“We want to increase life-cycle energy efficiency of buildings without compromising the comfort or performance. We will achieve this by integrating the latest developments in the ICT-field into Intelligent Building and Neighbourhood Management Systems and by presenting new ICT-enabled business models for energy-information related service provision.”

The researchers hope the results of IntUBE will create well-performing buildings that use natural resources optimally (especially energy). This will result in fewer environmental effects and in reduced life-cycle costs of energy so benefiting building owners and users as well as energy service and maintenance service providers.

For more information please contact
Professor Nashwan Dawood
on 01642 342405, mobile 07879888080
or email n.n.dawood@tees.ac.uk
Pic available >from pr@tees.ac.uk

Nic Mitchell | alfa
Further information:
http://www.tees.ac.uk/schools/sst/

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>