Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC and AIXTRON set important step towards low-cost GaN power devices

03.06.2008
IMEC, an independent European research center in the field of nanoelectronics, and AIXTRON, a metal-organic chemical-vapor deposition (MOCVD) equipment supplier, have demonstrated the growth of high-quality and uniform AlGaN/GaN heterostructures on 200mm silicon wafers. This demonstration is a milestone towards fabricating low-cost GaN power devices for high-efficiency/high-power systems beyond the silicon limits.

IMEC and AIXTRON deposited, for the first time ever, crack-free AlGaN/GaN structures onto 200mm Si(111) wafers. The layers show good crystalline quality as measured by high-resolution x-ray diffraction (HR-XRD). Excellent morphology and uniformity were obtained as well. The high-quality AlGaN and GaN layers were grown in AIXTRON’s application laboratory on the 300mm CRIUS metal-organic chemical-vapor-phase epitaxy (MOVPE) reactor.

“The demonstration of GaN growth on 200mm Si wafers is an important step towards processing GaN devices on large Si wafers”, said Marianne Germain, Program Manager of IMEC’s Efficient Power program. “There is a strong demand for GaN-based solid-state switching devices in the field of power conversion. However, bringing GaN devices to a level acceptable for most applications requires a drastic reduction in the cost of this technology. And that is only possible by processing on large-diameter Si wafers. 150mm, and then 200mm are the minimum wafer sizes we need to fully leverage today’s silicon processing capabilities.” The bow of the resulting wafers is still quite large, in the range of 100µm; but IMEC believes that an optimized buffer can reduce this bow drastically, enabling further processing. Marianne Germain: “We aim to further develop the growth process and to qualify the wafers to be compatible with Si-CMOS process.”

Gallium nitride (GaN) has outstanding capabilities for power, low-noise, high-frequency, high-temperature operations, even in harsh environment (radiation); it considerably extends the application field of solid-state devices. Due to the lack of commercially available GaN substrates, GaN heterostructures are nowadays grown mainly on sapphire and silicon carbide (SiC). Si is a very attractive alternative, being much cheaper than sapphire and SiC. Other benefits include the acceptable thermal conductivity of Si (half of that of SiC) and its availability in large quantities and large wafer sizes. But until now, Si wafers with (111) surface orientation were only available with a diameter up to 150mm. The 200mm wafers were custom-made by MEMC Electronic Materials, Inc. using the Czochralski growth (CZ) method. CZ wafers are ideally suited for switching applications with large breakdown voltages. For such devices, the performance is independent of the resistivity of the Si substrate.

Process details

For the AlGaN/GaN heterostructures, a standard layer stack, that had already been successfully demonstrated on 100 and 150mm Si(111) substrates, was used.

First an AlN layer was deposited onto the Si substrate, followed by an AlGaN buffer which provides compressive stress in the 1 micron thick GaN top layer. The stack was finished with a 20nm thin AlGaN (26% Al) layer and capped with a 2nm GaN layer. From in-situ measurements, researchers from IMEC were able to extract the thickness uniformity of the different layers which show a standard deviation well below 1% over the full 200mm wafers (5mm EE).

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.aixtron.com

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>