Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC and AIXTRON set important step towards low-cost GaN power devices

03.06.2008
IMEC, an independent European research center in the field of nanoelectronics, and AIXTRON, a metal-organic chemical-vapor deposition (MOCVD) equipment supplier, have demonstrated the growth of high-quality and uniform AlGaN/GaN heterostructures on 200mm silicon wafers. This demonstration is a milestone towards fabricating low-cost GaN power devices for high-efficiency/high-power systems beyond the silicon limits.

IMEC and AIXTRON deposited, for the first time ever, crack-free AlGaN/GaN structures onto 200mm Si(111) wafers. The layers show good crystalline quality as measured by high-resolution x-ray diffraction (HR-XRD). Excellent morphology and uniformity were obtained as well. The high-quality AlGaN and GaN layers were grown in AIXTRON’s application laboratory on the 300mm CRIUS metal-organic chemical-vapor-phase epitaxy (MOVPE) reactor.

“The demonstration of GaN growth on 200mm Si wafers is an important step towards processing GaN devices on large Si wafers”, said Marianne Germain, Program Manager of IMEC’s Efficient Power program. “There is a strong demand for GaN-based solid-state switching devices in the field of power conversion. However, bringing GaN devices to a level acceptable for most applications requires a drastic reduction in the cost of this technology. And that is only possible by processing on large-diameter Si wafers. 150mm, and then 200mm are the minimum wafer sizes we need to fully leverage today’s silicon processing capabilities.” The bow of the resulting wafers is still quite large, in the range of 100µm; but IMEC believes that an optimized buffer can reduce this bow drastically, enabling further processing. Marianne Germain: “We aim to further develop the growth process and to qualify the wafers to be compatible with Si-CMOS process.”

Gallium nitride (GaN) has outstanding capabilities for power, low-noise, high-frequency, high-temperature operations, even in harsh environment (radiation); it considerably extends the application field of solid-state devices. Due to the lack of commercially available GaN substrates, GaN heterostructures are nowadays grown mainly on sapphire and silicon carbide (SiC). Si is a very attractive alternative, being much cheaper than sapphire and SiC. Other benefits include the acceptable thermal conductivity of Si (half of that of SiC) and its availability in large quantities and large wafer sizes. But until now, Si wafers with (111) surface orientation were only available with a diameter up to 150mm. The 200mm wafers were custom-made by MEMC Electronic Materials, Inc. using the Czochralski growth (CZ) method. CZ wafers are ideally suited for switching applications with large breakdown voltages. For such devices, the performance is independent of the resistivity of the Si substrate.

Process details

For the AlGaN/GaN heterostructures, a standard layer stack, that had already been successfully demonstrated on 100 and 150mm Si(111) substrates, was used.

First an AlN layer was deposited onto the Si substrate, followed by an AlGaN buffer which provides compressive stress in the 1 micron thick GaN top layer. The stack was finished with a 20nm thin AlGaN (26% Al) layer and capped with a 2nm GaN layer. From in-situ measurements, researchers from IMEC were able to extract the thickness uniformity of the different layers which show a standard deviation well below 1% over the full 200mm wafers (5mm EE).

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.aixtron.com

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>