Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student Invents Alternative to Silicon Chip

15.05.2008
Even before Weixiao Huang received his doctorate from Rensselaer Polytechnic Institute, his new transistor captured the attention of some of the biggest American and Japanese automobile companies. The 2008 graduate’s invention could replace one of the most common pieces of technology in the world—the silicon transistor for high-power and high-temperature electronics.

Huang, who comes from humble roots as the son of farmers in rural China, has invented a new transistor that uses a compound material known as gallium nitride (GaN), which has remarkable material properties. The new GaN transistor could reduce the power consumption and improve the efficiency of power electronics systems in everything from motor drives and hybrid vehicles to house appliances and defense equipment.

“Silicon has been the workhorse in the semiconductor industry for last two decades,” Huang said. “But as power electronics get more sophisticated and require higher performing transistors, engineers have been seeking an alternative like gallium nitride-based transistors that can perform better than silicon and in extreme conditions.”

Each household likely contains dozens of silicon-based electronics. An important component of each of those electronics is usually a silicon-based transistor know as a silicon metal/oxide semiconductor field-effect transistor (silicon MOSFET). To convert the electric energy to other forms as required, the transistor acts as a switch, allowing or disallowing the flow of current through the device.

Huang first developed a new process that demonstrates an excellent GaN MOS (metal/oxide/GaN) interface. Engineers have known that GaN and other gallium-based materials have some extremely good electrical properties, much better than silicon. However, no useful GaN MOS transistor has been developed. Huang’s innovation, the first GaN MOSFET of its kind in the world, has already shown world-record performance according to Huang. In addition, Huang has shown that his innovation can integrate several important electronic functions onto one chip like never before. “This will significantly simplify entire electronic systems,” Huang said. Huang has also designed and experimentally demonstrated several new novel high-voltage MOS-gated FETs which have shown superior performance compared to silicon MOSFET in terms of lower power consumption, smaller chip size, and higher power density.

The new transistors can greatly reduce energy loss, making energy conversion more efficient. “If these new GaN transistors replaced many existing silicon MOSFETs in power electronics systems, there would be global reduction in fossil fuel consumption and pollution,” Huang said.

The new GaN transistors can also allow the electronics system to operate in extremely hot, harsh, and high-power environments and even those that produce radiation. “Because it is so resilient, the device could open up the field of electronic engineering in ways that were not previously possible due to the limitations imposed by less tolerant silicon transistors,” he said.

Huang has published more than 15 papers during his time as doctoral student in the Department of Electrical, Computer, and Systems Engineering at Rensselaer. Despite obvious difficulties, his parents worked tirelessly to give Huang the best possible educational opportunities according to Huang. And when school wasn’t enough, Huang’s father woke him up early every morning to practice mathematical calculations without a calculator, instilling in Huang a lifelong appreciation for basic, theoretical mathematics and sciences.

He received a bachelor’s in electronics from Peking University in Beijing in 2001 and a master’s in physics from Rensselaer in 2003. He will receive his doctorate from Rensselaer on May 17, 2008 and plans to work as a device engineer in the semiconductor industry.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Gabrielle DeMarco | newswise
Further information:
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>