Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New efficiency record for solar cells

15.05.2008
Physicist Bram Hoex (29) and colleagues at Eindhoven University of Technology (TU/e), together with the Fraunhofer Institute in Germany, have improved the efficiency of an important type of solar cell from 21.9 to 23.2 per cent (a relative improvement of 6 per cent).

This new world record is being presented on Wednesday 14 May at a major solar energy conference in San Diego, USA. The efficiency improvement is achieved by the use of an ultra-thin aluminum oxide layer at the front of the cell, and it brings a breakthrough in the use of solar energy a step closer.

An improvement of more than 1 per cent (in absolute terms) may at first glance appear modest, but it can enable solar cell manufacturers to greatly increase the performance of their products. This is because higher efficiency is a very effective way of reducing the cost price of solar energy. The costs of applying the thin layer of aluminum oxide are expected to be relatively low. This will mean a significant reduction in the cost of producing solar electricity.

Ultra-thin

Hoex was able to achieve the increase in efficiency by depositing an ultra-thin layer (approximately 30 nanometer) of aluminum oxide on the front of a crystalline silicon solar cell. This layer has an unprecedented high level of built-in negative charges, through which the – normally significant – energy losses at the surface are almost entirely eliminated. Of all sunlight falling on these cells, 23.2 per cent is now converted into electrical energy. This was formerly 21.9 per cent, which means a 6 per cent improvement in relative terms.

Dutch company OTB Solar

Hoex gained his PhD last week at the Applied Physics department of the TU/e with this research project. He was supported in the Plasma & Materials Processing (PMP) research group by professor Richard van de Sanden and associate professor Erwin Kessels. This group specializes in plasma deposition of extremely thin layers. The Dutch company OTB Solar has been a licensee of one of these processes since 2001, which it is using in its solar cell production lines. Numerous solar cell manufacturers around the world use equipment supplied by OTB Solar.

The ultra-thin aluminum oxide layer developed in the PMP group may lead to a technology innovation in the solar cell world. A number of major solar cell manufacturers have already shown interest.

Promising

Solar cells have for years looked like a highly promising way to partly solve the energy problem. The sun rises day after day, and solar cells can conveniently be installed on surfaces with no other useful purpose. Solar energy also offers opportunities for use in developing countries, many of which have high levels of sunshine. Within ten to fifteen years the price of electricity generated by solar cells is expected to be comparable to that of ‘conventional’ electricity from fossil fuels. This technology breakthrough now brings the industrial application of this type of high-efficiency solar cell closer. For this reason, part of Hoex’s PhD research project was paid for by three Dutch ministries: Economic Affairs; Education, Culture and Science; and Housing, Spatial Planning and the Environment.

Jim Heirbaut | alfa
Further information:
http://www.tue.nl

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>