Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soldered lenses

14.05.2008
Lenses in optical devices are kept in place by adhesives. This can cause problems when the microscopes and cameras are employed inside a vacuum, as the adhesives may release gases that contaminate the lenses. One alternative is to solder them instead.

When cameras and microscopes are placed in a vacuum, their functionality can be seriously impaired. This is because their lenses and prisms are normally fixed with adhesives, which release gases inside the vacuum.

The gas molecules settle on the lenses and alter their optical properties. At high temperatures, too, or when using lasers in the UV range, the adhesives cause problems: They become soft or brittle, and the optical components can slip by several micrometers.

Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena have now developed an alternative in a joint project with engineers from Pac Tech GmbH in Nauen. “We solder the optical components instead of gluing them,” says IOF group manager Dr.-Ing. Erik Beckert. “This has a definite advantage: The solder material is resistant to extreme temperatures and radiation, and also conducts heat and electricity.”

To enable them to apply the solder to the lenses just as flexibly as an adhesive, the researchers adapted the ‘solder bumping’ technique normally used in electronics manufacture. Small balls of solder contained in a dosing head slip one by one into a capillary, where a laser beam heats them until they become liquid. The liquid solder droplets are then shot by a nitrogen pressure pulse to the spot where they are needed to fix the lens. Once in place, the solder cools in just a few milliseconds and solidifies.

“This process can be automated and is very flexible. We can apply the solder downwards or from various other angles and in places that are difficult to access,” says Beckert. Solder bumping is much faster than gluing. While it takes 10 to 30 seconds to apply an adhesive and let it harden, soldering takes less than one second. To ensure that the solder does not come off the glass lenses, they have to be metallized in advance, for instance in a sputtering process which can be carried out on a large scale.

A special feature of the solder bumping process is that it does not need a fluxing agent. “Normally, flux is used to ensure that the solder fully coats the metal. However, in a vacuum, the flux residues would outgas in a similar way to adhesives. The lens system would have to be thoroughly cleaned before being used. That’s not necessary with the flux-free version,” says Beckert. At Optatec, which will take place in Frankfurt on June 17 through 20, the researchers will present prototypes of optical components fixed in place by solder bumping (Hall 3, Stand D53). Beckert hopes that the system will be ready for use in production in a year or two’s time.

Dr.-Ing. Erik Beckert | alfa
Further information:
http://www.fraunhofer.de/EN
http://www.fraunhofer.de/EN/bigimg/2008/rn05fo5g.jsp

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>