Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soldered lenses

14.05.2008
Lenses in optical devices are kept in place by adhesives. This can cause problems when the microscopes and cameras are employed inside a vacuum, as the adhesives may release gases that contaminate the lenses. One alternative is to solder them instead.

When cameras and microscopes are placed in a vacuum, their functionality can be seriously impaired. This is because their lenses and prisms are normally fixed with adhesives, which release gases inside the vacuum.

The gas molecules settle on the lenses and alter their optical properties. At high temperatures, too, or when using lasers in the UV range, the adhesives cause problems: They become soft or brittle, and the optical components can slip by several micrometers.

Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena have now developed an alternative in a joint project with engineers from Pac Tech GmbH in Nauen. “We solder the optical components instead of gluing them,” says IOF group manager Dr.-Ing. Erik Beckert. “This has a definite advantage: The solder material is resistant to extreme temperatures and radiation, and also conducts heat and electricity.”

To enable them to apply the solder to the lenses just as flexibly as an adhesive, the researchers adapted the ‘solder bumping’ technique normally used in electronics manufacture. Small balls of solder contained in a dosing head slip one by one into a capillary, where a laser beam heats them until they become liquid. The liquid solder droplets are then shot by a nitrogen pressure pulse to the spot where they are needed to fix the lens. Once in place, the solder cools in just a few milliseconds and solidifies.

“This process can be automated and is very flexible. We can apply the solder downwards or from various other angles and in places that are difficult to access,” says Beckert. Solder bumping is much faster than gluing. While it takes 10 to 30 seconds to apply an adhesive and let it harden, soldering takes less than one second. To ensure that the solder does not come off the glass lenses, they have to be metallized in advance, for instance in a sputtering process which can be carried out on a large scale.

A special feature of the solder bumping process is that it does not need a fluxing agent. “Normally, flux is used to ensure that the solder fully coats the metal. However, in a vacuum, the flux residues would outgas in a similar way to adhesives. The lens system would have to be thoroughly cleaned before being used. That’s not necessary with the flux-free version,” says Beckert. At Optatec, which will take place in Frankfurt on June 17 through 20, the researchers will present prototypes of optical components fixed in place by solder bumping (Hall 3, Stand D53). Beckert hopes that the system will be ready for use in production in a year or two’s time.

Dr.-Ing. Erik Beckert | alfa
Further information:
http://www.fraunhofer.de/EN
http://www.fraunhofer.de/EN/bigimg/2008/rn05fo5g.jsp

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>